Menu

Blog

Archive for the ‘3D printing’ category: Page 45

May 19, 2020

Controlling spatter during laser powder bed fusion found to reduce defects in metal-based 3D printing

Posted by in categories: 3D printing, biotech/medical

A team of researchers with members from Lawrence Livermore National Laboratory, Wright-Patterson Air Force Base and the Barnes Group Advisors found that controlling spatter during laser-powder bed fusion can reduce defects in metal-based 3D printing. In their paper published in the journal Science, the group describes studying the additive manufacturing printing methodology and what they learned about it. Andrew Polonsky and Tresa Pollock with the University of California, Santa Barbara have published a Perspective piece on the work done by the team in the same journal issue.

As additive manufacturing printing methodologies mature, are being tested to find out if they might be used in 3D printers to create new products. In recent years, this has extended to metals. One such technique is called laser-powder bed fusion (L-PBF). It involves the use of a high-powered laser to melt and fuse metallic powders layer by layer to produce a 3D part. It has been hoped that the technique could eventually be used for aerospace and biomedical applications. But thus far, such efforts have fallen short due to the large number of defects that occur with the process. In this new effort, the researchers have discovered a way to reduce such defects, perhaps paving the way for the technique to finally fulfill its promise.

To better understand why the L-PBF process leads to so many defects (such as undesired pores) the researchers conducted X-ray synchrotron experiments and built predictive multi-physics models to gain a better understanding of what occurs during printing. One of their goals was to better understand how energy is absorbed during with powder layers that are only a few particles thick.

May 18, 2020

A soft robotic finger fabricated using multi-material 3D printing

Posted by in categories: 3D printing, robotics/AI

Researchers at Zhejiang University of Technology, Tianjin University, Nanjing Institute of Technology and Ritsumeikan University have recently created a soft robotic finger that integrates a self-powered curvature sensor using multi-material 3D printing technology. The new robotic finger, presented in a paper published in Elsevier’s Nano Energy journal, is made of several materials, including a stretchable electrode, polydimethylsiloxane (PDMS), AgilusBlack, VeroWhite and FLX9060.

“Soft robots have the potential to bridge the gap between machines and humans, but it is important for them to ensure a safe interaction between humans, objects and the environment,” Mengying Xie, co-author of the paper, told TechXplore. “Embedded soft are critical for the development of controllable that can fulfill their full potential in practical applications.”

In their previous research, part of the research team working at Ritsumeikan University developed a fully multi-material 3D printed gripper with variable stiffness that could achieve robust grasping of objects. In this new study, Xie, Zhu and their colleagues drew inspiration from this previous work and set out to create a 3D-printed soft finger with sensing capabilities that could monitor its bending movements.

May 17, 2020

10 Coolest 3D Printed Cars

Posted by in categories: 3D printing, transportation

Believe it or not, 3D printed cars are a reality.

Although you won’t be able to find 3D printed cars at your local car dealership just yet, there are some very interesting concepts out there that do a great job of presenting the possibilities of 3D printing in the automotive industry. They even represent the first steps towards mass-produced 3D printed cars.

Here are 10 of the coolest cars that are 3D printed or contain 3D printed parts. Just keep in mind that most of them aren’t available for purchase.

May 17, 2020

Czinger 21C: the world’s first 3D printed hypercar | Top Gear

Posted by in categories: 3D printing, energy, military

The Czinger 21C is a 1,233bhp 3D printed hypercar complete with a turbo V8 revving to 11,000rpm, a 1+1 layout and $1.7m price tag. Oh, and the big news is it’s 3D printed. Well, large sections of the chassis are, paving the way for a revolutionary new car manufacturing process that could change… everything. It’s mind-blowing stuff, so let Jack Rix be your guide around California’s Koenigsegg rival.

WATCH MORE TOP GEAR:
http://bit.ly/TG-S27
http://bit.ly/StigCams
http://bit.ly/TG-Mercedes

Continue reading “Czinger 21C: the world’s first 3D printed hypercar | Top Gear” »

May 16, 2020

Self-repairing shoes may be a reality thanks to 3D-printed rubber

Posted by in categories: 3D printing, robotics/AI

Circa 2019 face_with_colon_three


Shoes will invariably wear out with enough use, but scientists might have found a way to delay the shopping trip for their replacements. A USC team has created a self-healing 3D-printed rubber that could be ideal for footwear, tires and even soft robotics. The effort involves 3D printing the material with photopolymerization (solidifying a resin with light) while introducing an oxidizer at just the right ratio to add self-healing properties without slowing down the solidifying process.

Continue reading “Self-repairing shoes may be a reality thanks to 3D-printed rubber” »

May 14, 2020

New 3D printer makes multi-material robots

Posted by in categories: 3D printing, robotics/AI

This charming conical flask-carrying robot was created by a 3D printer capable of printing with multiple different materials, at a speed and level of detail that was previously impossible. And in the future it could have some, well, slightly more useful applications…

May 12, 2020

Oak Ridge National Laboratory is developing a 3D printed nuclear reactor core

Posted by in categories: 3D printing, nuclear energy

Researchers at the US Department of Energy (DOE)’s Oak Ridge National Laboratory (ORNL) are developing a nuclear reactor core using 3D printing.

As part of its Transformational Challenge Reactor (TCR) Demonstration Program, which aims to build an additively manufactured microreactor, ORNL has refined its design of the reactor core, while also scaling up the additive manufacturing process necessary to build it. Additionally, the researchers have established qualification methods to confirm the consistency and reliability of the 3D printed components used in creating the core.

“The nuclear industry is still constrained in thinking about the way we design, build and deploy nuclear energy technology,” comments ORNL Director Thomas Zacharia.

May 9, 2020

Rubber “exoskeleton” lets liquid metal structures retain their shape

Posted by in categories: 3D printing, cyborgs

This could allow for nanosuit armor :3.


Imagine if there were a metallic device that could be transported all squished down into a compact ball, but that would automatically “bloom” out into its useful form when heated. Well, that may soon be possible, thanks to a newly developed liquid metal lattice.

Led by Asst. Prof. Pu Zhang, a team of scientists at New York’s Bingham University started by 3D printing lattice-type structures out of an existing metal known as Field’s alloy. Named after its inventor, chemist Simon Quellen Field, the alloy consists of a mixture of bismuth, indium and tin. It also melts when heated to just 62 °C (144 °F), but then re-solidifies upon cooling.

Continue reading “Rubber ‘exoskeleton’ lets liquid metal structures retain their shape” »

May 9, 2020

This Insane New Electric Motorcycle Was Made Using 3D-Printed Titanium Parts

Posted by in categories: 3D printing, sustainability, transportation

Straight from the year 2029.

May 7, 2020

Community First! Village 3D-Printed Affordable Homes

Posted by in categories: 3D printing, habitats

At 500 square feet, ICON’s stylish new structure was 3D-printed over the course of several days—but it only took 27 hours of labor to construct. The building will serve as a welcome center at Austin’s new Community First! Village—a 51-acre development that will provide affordable housing to men and women coming out of chronic homelessness. Six new 3D-printed homes will be added to the village by the end of this year—and ICON says that they can be built at significantly less cost than conventional homes.


A year ago, ICON proved it could 3D print a home you’d actually want to live in. Now, it’s building a cluster of 3D-printed homes for the homeless.

Continue reading “Community First! Village 3D-Printed Affordable Homes” »

Page 45 of 140First4243444546474849Last