Toggle light / dark theme

There are a seemingly endless number of quantum states that describe quantum matter and the strange phenomena that emerge when large numbers of electrons interact. For decades, many of these states have been theoretical: mathematical and computational predictions potentially hiding among real-life materials—a zoo, as many scientists are coming to refer to it, with new “species” just waiting to be discovered and described.

In a new study published on April 3 in Nature, researchers added over a dozen states to the growing quantum zoo.

“Some of these states have never been seen before,” said lead author Xiaoyang Zhu, Howard Family Professor of Nanoscience at Columbia. “And we didn’t expect to see so many either.”

Researchers have achieved a major leap in quantum computing by simulating Google’s 53-qubit Sycamore circuit using over 1,400 GPUs and groundbreaking algorithmic techniques. Their efficient tensor network methods and clever “top-k” sampling approach drastically reduce the memory and computational

Results of a randomized, controlled clinical trial in Japan among more than 170 children aged 1 to 6 who underwent surgery show that by using EEG readings of brain waves to monitor unconsciousness, an anesthesiologist can significantly reduce the amount of the anesthesia administered to safely induce and sustain each patient’s anesthetized state.

On average, the patients experienced significant improvements in several post-operative outcomes, including quicker recovery and reduced incidence of delirium.

“I think the main takeaway is that in kids, using the EEG, we can reduce the amount of anesthesia we give them and maintain the same level of unconsciousness,” said study co-author Emery N. Brown, Edward Hood Taplin Professor of Medical Engineering and Computational Neuroscience at MIT and an anesthesiologist at Massachusetts General Hospital. The study appears in JAMA Pediatrics.

A team of engineers, computer scientists and ophthalmologists at the University of California, Berkeley, working with a pair of colleagues at the University of Washington, has developed a technique for stimulating the retina that allows people to see a color not normally seen by humans.

In their study published in the journal Science Advances, the group identified certain photoreceptors in volunteers and then stimulated them to allow those volunteers to see the unique color, which the team has named “olo.”

The human eye has two types of photoreceptors, rods and cones. Rods are used mostly to see in dark conditions. Cones are further divided into long, medium and short cones (L, M and S) depending on which they process most efficiently. Prior research has shown that there is some overlap in light processing between the , and the researchers wondered what would happen if light were only processed by one type, such as M.

There is no “outside.” No other system. The universe is not on a computer. It is the computer. It is the thing performing the computation. It doesn’t need anyone watching it. It doesn’t need a server farm or a control panel. It simply is what it is: a system that processes information according to its own rules.
In other words, when we talk about the universe as a quantum computer, we’re not saying it’s pretending to be real. We’re saying this is what real is.

1:19 Reality as Code.
8:35 What Is a Quantum Computer, Anyway?
13:37 Evidence and Models That Support the Quantum Universe Idea.
20:04 What Would It Mean If the Universe Is a Quantum Computer?
26:14 Could We Simulate the Universe from Within It?
32:37 The Dark Implications.
39:53 Is This the Best Description We’ll Ever Get?

Physicists have successfully played a mind-bending “quantum game” using a real-world quantum computer, in which lasers shuffle around ions on a chip to explore the strange behavior of qubits. By creating a special, knotted structure of entangled particles, the team demonstrated that today’s quant

A research team at HZB has developed a clever technique to read quantum spin states in diamonds using electrical signals instead of light. This breakthrough could dramatically simplify quantum sensors and computing hardware.

Diamonds that contain specific optically active defects, known as color centers, can serve as highly sensitive sensors or as qubits for quantum computers, with quantum information stored in their electron spin states. Traditionally, reading these spin states requires optical methods, which are often complex and difficult to implement. Now, researchers at HZB have developed a more streamlined approach: using photovoltage to detect the spin states of individual defects. This method could pave the way for much smaller and more compact quantum sensors.

Harnessing Defects for Spin States.