Toggle light / dark theme

Scientists have developed shape-shifting nanorobots that can flow like liquid and solidify like steel, paving the way for breakthroughs in medicine, engineering, and robotics. These nanobots, inspired by gallium-based materials, respond to magnetic fields, allowing them to navigate through tight spaces, repair electronics, and even perform medical procedures. While still in the early stages, this futuristic technology could lead to self-healing materials, autonomous repairs, and shape-adaptive robotics, bringing us closer to a world of smart, responsive materials.

Ten years ago, nobody knew that Asgard archaea even existed. In 2015, however, researchers examining deep-sea sediments discovered gene fragments that indicated a new and previously undiscovered form of microbes.

With computer assistance, the researchers assembled these fragments like puzzle pieces to compile the entire genome. It was only then that they realized they were dealing with a previously unknown group of archaea.

Like bacteria, archaea are . Genetically, however, there are significant differences between the two domains, especially regarding their cell envelopes and metabolic processes.

Aging brains may struggle to clear out waste, contributing to memory loss and diseases like Alzheimer’s. But researchers have now found that improving the brain’s waste-draining vessels in old mice actually boosted their memory. Rather than targeting the brain directly, which is tricky due to the

The researchers turned to a group of molecules called acylcarnitines, which are associated with declining cognition and breaking down or metabolizing fats and proteins for energy. To test if high acylcarnitine levels in the blood could predict who’s at risk of developing Alzheimer’s, the researchers used data from a large-scale study called the Alzheimer’s Disease Neuroimaging Initiative.

“It was fascinating,” the author said. “Dividing research participants into groups based on their specific acylcarnitine levels highlighted people with more severe Alzheimer’s disease and others with fewer symptoms.” This led the researchers to define a bioenergetic clock based on acylcarnitines—how old a person’s metabolism acts, compared to actual age. Higher bioenergetic age is linked to higher acylcarnitine levels, worsened Alzheimer’s pathology, cognitive decline and brain atrophy.

The researchers also quantified cognitive decline using a common test called the mini-mental state examination, on which a score below 24 out of 30 points indicates impairment. They found that people with low acylcarnitine levels to begin with declined more slowly, losing about 0.5 points less per year than people with high acylcarnitine levels. The benefit is on par with the Alzheimer’s drug lecanemab.

To some degree, a person’s bioenergetic clock ticks forward at a rate determined by their genetics, but having a healthy lifestyle—for example, eating a plant-based diet and exercising —can help keep acylcarnitine levels low, which means a younger bioenergetic age, the author explained.

They went on to identify a subgroup of participants, about 30% of the Alzheimer’s Disease Neuroimaging Initiative, with older bioenergetic age but favorable genetic background. These individuals may benefit more from early lifestyle interventions designed to decrease their bioenergetic age and potentially delay or prevent the onset of Alzheimer’s.

Moving forward, the senior author hopes to home in on the lifestyle interventions most effective for lowering bioenergetic age. For example, eating a low-carb diet may help maintain metabolic health, but just how low would carbohydrate consumption have to be for a person to see benefits?


Like people, bacteria get invaded by viruses. In bacteria, the viral invaders are called bacteriophages, derived from the Greek word for bacteria-eaters, or in shortened form, “phages.” Scientists have sought to learn how the single-cell organisms survive phage infection in a bid to further understand human immunity and develop ways to combat diseases.

Now, Johns Hopkins Medicine scientists say they have shed new light on how bacteria protect themselves from certain phage invaders—by seizing genetic material from weakened, dormant phages and using it to “vaccinate” themselves to elicit an immune response.

In their experiments, the scientists say Streptococcus pyogenes bacteria (which cause ) take advantage of a class of phages known as temperate phages, which can either kill cells or become dormant. The bacteria steal from temperate phages during this dormant period and form a biological “memory” of the invader that their offspring inherit as the bacteria multiply. Equipped with these memories, the new population can recognize these viruses and fight them off.

This collaboration marks a significant step in both companies’ efforts to address the pressing needs in cancer treatment through innovative solutions.

OBT has developed a proprietary discovery platform, OGAP-Verify, which has enhanced sensitivity and specificity for identifying promising drug targets.

This platform is central to collaboration, as it allows for selecting targets with improved attributes crucial for effective drug development.

A team of physicists, engineers, opticians and photonics specialists at Zhejiang University, in China, working with a pair of colleagues from the University of Cambridge, in the U.K., has found a way to make pixels smaller by using perovskite. In their paper published in the journal Nature, the group describes how they used the mineral to create pixels as small as a virus.

As the research team notes, the rallying cry for electronics in the modern age is to add more technology to ever smaller base units. For computers, for many years, the goal was to double the number of transistors on a single integrated circuit. Similarly, reducing the size of pixels in has led to sharper and sharper imagery.

The current standard for digital display technology is micro-LED, which is based on II-V semiconductors. Unfortunately, such technology becomes too expensive and inefficient to make pixels any smaller than the size currently in use. This led the team to wonder if a different base material might allow the creation of smaller pixels that would be both cost-effective and efficient. They turned to , the same mineral that is currently being investigated as a replacement for silicon in as a way to reduce costs.