Toggle light / dark theme

The agricultural sector in South Africa is undergoing a transformation with the introduction of AI-powered harvesting robots. These advanced machines are set to revolutionize farming by increasing efficiency, reducing labor costs, and ensuring better crop yields. With the growing challenges of climate change, labor shortages, and the need for sustainable farming, AI-driven technology is emerging as a critical solution for modern agriculture.

Artificial intelligence has become a vital tool in various industries, and agriculture is no exception. AI-powered robots are designed to perform labor-intensive tasks such as planting, watering, monitoring crop health, and harvesting. These machines utilize machine learning, computer vision, and sensor technology to identify ripe crops, pick them with precision, and minimize waste.

In South Africa, where agricultural labor shortages and rising costs have posed challenges to farmers, AI-driven automation is proving to be a game-changer. With an estimated 8.5% of the country’s workforce employed in agriculture, technological advancements can significantly improve productivity while alleviating labor constraints.

Mars, the next frontier in space exploration, still poses many questions for scientists. The planet was once more hospitable, characterized by a warm and wet climate with liquid oceans. But today Mars is cold and dry, with most water now located below the surface. Understanding how much water is stored offers critical information for energy exploration, as well as life sustainability on the planet.

A research group from Tohoku University has helped shed light on this by improving an existing Mars climate model. The enhanced model accommodates the various properties of Martian regolith, or the loose deposits of solid rock that comprise Martian soil. The study is published in the Journal of Geophysical Research: Planets.

Mirai Kobayashi says current models fail to account for the fact that laboratory experiments have demonstrated that the water-holding capacity of the regolith is strongly influenced by its adsorption coefficient.

The mass extinction that ended the Permian geological epoch, 252 million years ago, wiped out most animals living on Earth. Huge volcanoes erupted, releasing 100,000 billion metric tons of carbon dioxide into the atmosphere. This destabilized the climate and the carbon cycle, leading to dramatic global warming, deoxygenated oceans, and mass extinction.

However, many plants survived, leaving behind fossils which scientists have used to model a dramatic 10° rise in .

“While fossilized spores and pollen of plants from the Early Triassic do not provide strong evidence for a sudden and catastrophic biodiversity loss, both marine and terrestrial animals experienced the most severe mass extinction in Earth’s history,” explained Dr. Maura Brunetti of the University of Geneva, lead author of the article in Frontiers in Earth Science.

A team of researchers from the University of Ottawa has made significant strides in understanding the ionization of atoms and molecules, a fundamental process in physics that has implications for various fields including X-ray generation and plasma physics.

The research, titled “Orbital angular momentum control of strong-field in atoms and molecules,” is published in Nature Communications.

Think about atoms—the building blocks of everything around us. Sometimes, they lose their electrons and become charged particles (that’s ionization). It happens in lightning, in plasma TVs, and even in the . Until now, scientists thought they could only control this process in limited ways.

Could this VR experience change how you see the planet?


For many, constant bad news numbs our reaction to climate disasters. But research suggests that a new type of immersive storytelling about nature told through virtual reality (VR) can both build empathy and inspire us to act.

I’m crying into a VR headset. I’ve just watched a VR experience that tells the story of a young pangolin called Chestnut, as she struggles to survive in the Kalahari Desert. A vast, dusty landscape extends around me in all directions, and her armoured body seems vulnerable as she curls up, alone, to sleep. Her story is based on the life of a real pangolin that was tracked by scientists.

Chestnut hasn’t found enough to ants to eat, since insect numbers have dwindled due to climate change. Her sunny voice remains optimistic even as exhaustion takes over. In the final scenes, she dies, and I must clumsily lift my headset to dab my eyes.

🌍 New research suggests more than half of global cropland areas could lose suitable crops under a warming scenario of 2C.

📚 The study mapped how climate change could reshape areas suited for 30 major crops across four warming scenarios — from 1.5C to 4C.

🔎 Even at 1.5C, over half of the crops studied could see a decline in suitable cropland, with tropical regions hit hardest. In contrast, areas far from the equator could gain crop diversity — opening doors for climate adaptation.

S impact on agriculture. + s findings here ⬇️ +.


More than half of global cropland areas could see a decline in the number of suitable crops under a warming scenario of 2C, new research finds.

The study, published in Nature Food, projects how climate change will modify the areas suited for growing 30 major crops under four scenarios, ranging from 1.5 to 4C of global warming.

In 1989, political scientist Francis Fukuyama predicted we were approaching the end of history. He meant that similar liberal democratic values were taking hold in societies around the world. How wrong could he have been? Democracy today is clearly on the decline. Despots and autocrats are on the rise.

You might, however, be thinking Fukuyama was right all along. But in a different way. Perhaps we really are approaching the end of history. As in, game over humanity.

Now there are many ways it could all end. A global pandemic. A giant meteor (something perhaps the dinosaurs would appreciate). Climate catastrophe. But one end that is increasingly talked about is (AI). This is one of those potential disasters that, like climate change, appears to have slowly crept up on us but, many people now fear, might soon take us down.

Scientists have recorded the first-ever brain scan of a dying human.

A man suddenly died during a routine brain scan, revealing intriguing insights into what happens in our final moments.

An 87-year-old man undergoing a routine EEG for epilepsy suffered a fatal heart attack. Researchers found that in the 30 seconds before and after his heart stopped, his brain waves resembled those seen during dreaming, memory recall, and meditation.

This suggests that the commonly reported phenomenon of “life flashing before your eyes” may have a neurological basis. However, since this is a single case study, more research is needed to confirm how common this experience may be.

The findings, published by Dr. Ajmal Zemmar and his team, showed a surge in gamma waves — high-frequency neural oscillations linked to memory and consciousness — just before and after death.

These waves are typically observed when people recall memories, adding weight to the idea that the brain may replay key life events in its final moments. While this discovery cannot fully explain the mysteries of death, it offers a fascinating glimpse into the brain’s last activity and opens the door for further research on human consciousness at the end of life.


Spotting flaws is sometimes the first ripple in making waves of innovation.

Comparing directly observed with the latest advanced simulations, researchers from the Research Organization of Information and Systems (ROIS) and their colleagues have revealed significant limitations in current atmospheric modeling. Their findings emphasize the complexities of these atmospheric waves and their impacts on weather and climate systems.

The study was published in the Journal of the Meteorological Society of Japan on Sept. 2.

In the San Diego suburb of Carlsbad, a new plant to desalinate seawater is almost ready. For about a billion dollars, it will produce 7 percent of the area’s drinking water, courtesy of the Pacific Ocean. But in these times of record drought, two Texas entrepreneurs are advocating another solution: Instead of pulling fresh water out of the sea, they want to pull it out of the air. The machine they’re developing at Trinity University in San Antonio, called an atmospheric water generator, is still in its pilot phrase. But to hear Moses West tell it, if the climate conditions are right, the AWG has the potential to end drought.

West, who’s testing the machine along with business partner John Vollmer, calls himself “a water farmer.” He explains that there are three potential sources of human drinking water: groundwater, rivers and gas. Thanks to NASA’s GRACE satellite system, which measures the abundance and quality of aquifers, we know that the Earth’s groundwater supply is dwindling — and increasingly contaminated by pesticides and runoff. Rivers, at least near any major metropolitan area, are out of the question as sources for drinking water. That leaves water vapor, which West calls “the purest, cleanest, most abundant, recyclable source of water that exists on the face of the earth.”

The atmospheric water generator was first developed in Spain, another country with perpetual drought problems, but according to West, it performs best in high-heat, high-humidity areas. It can reliably produce between 2,000 and 3,000 gallons of water per day, and with the proper institutional support, West says, “I know how to scale this up to produce a million gallons a day, 30 million gallons a month.”