Polymer-based modulation of gold-gold gap could yield new types of hologram.

NEW YORK, Aug. 5, 2025 /PRNewswire/ — A new study provides the first visual evidence showing that brain circuits in living animals can be activated by ultrasound waves projected into specific patterns (holograms).
Led by scientists at NYU Langone Health and at the University of Zurich and ETH Zurich in Switzerland, the study describes a system that combines sources of ultrasound waves and a fiber scope connected to a camera to visualize in study mice brain targets that are directly activated by the sound. This lays the groundwork, the study authors say, for a new way to treat neurological diseases and mental health disorders from outside of the body.
Already, there are applications approved by the Food and Drug Administration and designed to reduce tremor symptoms seen in Parkinson’s disease, using intense sound waves to kill brain cells called neurons within neural pathways linked to tremors. Rather than kill neurons, the lower-intensity ultrasound waves used in the current work can temporarily activate them, the researchers say. The resulting effects can be widespread as neurons relay messages to other neurons within their circuits and between interconnected neuronal circuits.
Using 3D holograms polished by artificial intelligence, researchers introduce a lean, eyeglass-like 3D headset that they say is a significant step toward passing the “Visual Turing Test.”
“In the future, most virtual reality displays will be holographic,” said Gordon Wetzstein, a professor of electrical engineering at Stanford University, holding his lab’s latest project: a virtual reality display that is not much larger than a pair of regular eyeglasses. “Holography offers capabilities that we can’t get with any other type of display in a package that is much smaller than anything on the market today.”
Holography is a Nobel Prize-winning 3D display technique that uses both the intensity of light reflecting from an object, as with a traditional photograph, and the phase of the light (the way the waves synchronize), to produce a hologram, a highly realistic three-dimensional image of the original object.
IN A NUTSHELL 🚀 Brown University students developed a novel imaging technique using quantum entanglement to capture 3D images. 🔬 The method employs infrared light for illumination and visible light for imaging, enhancing depth resolution without costly infrared cameras. 🧪 The team solved the issue of phase wrapping by using two sets of entangled photons.
IN A NUTSHELL 🔬 Brown University engineers utilize quantum entanglement to enhance 3D holographic imaging without traditional infrared cameras. 💡 The new technique, Quantum Multi-Wavelength Holography, overcomes phase wrapping challenges to deliver high-fidelity images. 🔍 By pairing infrared and visible light photons, the method captures both intensity and phase, offering unprecedented depth resolution. 🌟 Funded
A novel microscopic imaging technique, developed by Brown University engineers to capture 3D images using quantum entanglement, may finally solve the problem of phase wrapping.
Undergraduate students Moe (Yameng) Zhang and Wenyu Liu presented their work at the recent Conference on Lasers and Electro-Optics. They worked on an independent project under the supervision of senior research associate Petr Moroshkin and Professor Jimmy Xu.
A new camera setup can record three-dimensional movies with a single pixel. Moreover, the technique can obtain images outside the visible spectrum and even through tissues. The Kobe University development thus opens the door to holographic video microscopy.
Holograms are not only used as fun-to-look-at safety stickers on credit cards, electronic products or banknotes; they have scientific applications in sensors and in microscopy as well. Traditionally, holograms require a laser for recording, but more recently, techniques that can record holograms with ambient light or light emanating from a sample have been developed.
There are two main techniques that can achieve this: one is called “FINCH” and uses a 2D image sensor that is fast enough to record movies, but is limited to visible light and an unobstructed view, while the other is called “OSH,” which uses a one-pixel sensor and can record through scattering media and with light outside the visual spectrum, but can only practically record images of motionless objects.
A new kind of microscope called ELVIS is heading to the International Space Station to change how we study life in space. By creating stunning 3D holograms of cells, it allows scientists to observe how organisms adapt to microgravity and other extreme conditions. This could help us understand whe
UPNA researchers created a 3D mid-air display allowing natural hand interaction with virtual objects using an elastic diffuser and high-speed projections. Dr. Elodie Bouzbib from the Public University of Navarra (UPNA), together with Iosune Sarasate, Unai Fernández, Manuel López-Amo, Iván Fernánd