Toggle light / dark theme

In recent years, researchers have been trying to develop increasingly advanced battery technologies that can be charged faster and store more energy, while also remaining safe and stable over time. Lithium-metal batteries (LMBs), which contain a lithium-metal-based anode, have been found to be promising alternatives to lithium-ion batteries (LiBs), which are currently the most widely used rechargeable batteries.

A key advantage of LMBs is that they can store significantly more energy than LiBs, which could be advantageous for and other large or advanced electronics. Despite their potential, these batteries have so far proved to be less stable and safe than LiBs, while also charging relatively slowly; limitations that have so far prevented their widespread adoption.

A research team at the Korea Advanced Institute of Science and Technology (KAIST) and other institutes recently designed new based on symmetric organic salts, which could help to boost the performance of LMBs. Their newly designed electrolytes, introduced in a paper in Nature Energy, were found to improve the stability and charging speed of LMBs, preventing the formation of dendrites (lithium deposits that cause a battery’s performance to decline over time).

Redox reactions form the basis of many fundamental processes of life. Without them, neither cellular respiration nor photosynthesis could take place. Redox reactions also play a crucial role in applications in the domains of chemistry, biochemistry, and the use of light for energy generation. Understanding the fundamental principles of these reactions is therefore important for driving forward new technologies.

Using an innovative method based on high pressures, a team led by LMU chemist Professor Ivana Ivanović-Burmazović and Professor Dirk Guldi from FAU Erlangen-Nürnberg has managed for the first time to differentiate two related reaction mechanisms. The research is published in the journal Nature Chemistry.

Where can you find lasers, electric guitars, and racks full of novel batteries, all in the same giant room? This week, the answer was the 2025 ARPA-E Energy Innovation Summit just outside Washington, DC.

Energy innovation can take many forms, and the variety in energy research was on display at the summit. ARPA-E, part of the US Department of Energy, provides funding for high-risk, high-reward research projects. The summit gathers projects the agency has funded, along with investors, policymakers, and journalists.

Hundreds of projects were exhibited in a massive hall during the conference, featuring demonstrations and research results. Here are four of the most interesting innovations MIT Technology Review spotted on site.


From laser steel to fuel made from rocks, we look inside the 2025 ARPA-E energy technology conference.

Experiments support a controversial proposal to generate electricity from our planet’s rotation by using a device that interacts with Earth’s magnetic field.

“It seems crazy,” says Chris Chyba of Princeton University, talking about the hollow magnetic cylinder he has built to generate electricity using Earth’s magnetic field. The cylinder doesn’t move—at least not in the lab—but it rotates with the planet and is thus dragged through Earth’s magnetic field. “It has a whiff of a perpetual motion machine,” Chyba says, but his calculations show that the harvested energy comes from the planet’s rotational energy. He and his colleagues now report that 18 microvolts (µV) are generated across the cylinder when it is held perpendicular to Earth’s field [1]. Next they have to convince other scientists that the effect is real.

Chyba became interested in electricity generation about a decade ago while studying a possible warming mechanism in moons moving through a planet’s magnetic field. He wondered if a similar effect might occur for objects on Earth’s surface.

A research team at UNIST has identified the causes of oxygen generation in a novel cathode material called quasi-lithium and proposed a material design principle to address this issue.

Quasi-lithium materials theoretically enable batteries to store 30% to 70% more energy compared to existing technologies through high-voltage charging of over 4.5V. This advancement could allow to achieve a of up to 1,000 km on a single charge. However, during the high-voltage charging process, oxygen trapped inside the material can oxidize and be released as gas, posing a significant explosion risk.

The research team, led by Professor Hyun-Wook Lee in the School of Energy and Chemical Engineering, discovered that oxygen oxidizes near 4.25V, causing partial structural deformation and gas release.

A trio of physicists from Princeton University, CIT’s Jet Propulsion Laboratory and Spectral Sensor Solutions, all in the U.S., is proposing the possibility of generating electricity using energy from the rotation of the Earth. In their study, published in the journal Physical Review Research, Christopher Chyba, Kevin Hand and Thomas Chyba tested a theory that electricity could be generated from the Earth’s rotation using a special device that interacts with the Earth’s magnetic field.

Over the past decade, members of the team have been toying with the idea of generating electricity using the Earth’s rotation and its magnetic field, and they even published a paper describing the possibility back in 2016. That paper was met with criticism because prior theories have suggested that doing so would be impossible because any created by such a device would be canceled as the electrons rearrange themselves during the generation of an electric field.

The researchers wondered what would happen if this cancelation was prevented and the voltage was instead captured. To find out, they built a special device consisting of a cylinder made of manganese-zinc ferrite, a weak conductor, which served as a magnetic shield. They then oriented the cylinder in a north-south direction set at a 57° angle. That made it perpendicular to both the Earth’s rotational motion and the Earth’s magnetic field.

Scientists are developing ever-more powerful magnets to enable clean energy sources like fusion. But China’s dominance of the supply chain for rare-earth magnets threatens their global availability.

Bloomberg Primer cuts through the complex jargon to reveal the business behind technologies poised to transform global markets. This six-part, planet-spanning series offers a comprehensive look at the \.