Toggle light / dark theme

Machine Learning Interatomic Potentials in Computational Materials

Machine learning interatomic potentials (MLIPs) have become an essential tool to enable long-time scale simulations of materials and molecules at unprecedented accuracies. The aim of this collection is to showcase cutting-edge developments in MLIP architectures, data generation techniques, and innovative sampling methods that push the boundaries of accuracy, efficiency, and applicability in atomic-scale simulations.

Scientists discover new phenomenon in chiral symmetry breaking

Researchers at The University of Osaka have discovered a new type of chiral symmetry breaking (CSB) in an organic crystalline compound.

This phenomenon, involving a solid-state structural transition from an achiral to a chiral crystal, represents a significant advance in our understanding of chirality and offers a simplified model to study the origin of homochirality. This transformation also activates circularly polarized luminescence, enabling new optical materials with tunable light properties.

The work has been published in Chemical Science.

US scientists create reusable ‘jelly ice’ that never melts

Frozen tofu inspires US scientists to create reusable ‘jelly ice’ that never melts.


Interestingly, the jelly ice is 90% water and can be molded into different shapes.

“Compared to regular ice of the same shape and size, jelly ice has up to 80% of the cooling efficiency — the amount of heat the gel can absorb through phase change,” said Jiahan Zou, the study researcher.

“And we can reuse the material and maintain the heat absorbance across multiple freeze-thaw cycles, so that’s an advantage compared to regular ice,” added Zou.

Crafting the Perfect Bite of Meat

Israeli and Palestinian engineers from the Hebrew University of Jerusalem develop novel metamaterials for the cost-effective injection molding of whole cuts of meat. Link to images: https://drive.google.com/drive/folders/1EIb0hFDVh67Lddqkmf4x…sp=sharing In a new publication in Nature Communications, Israeli and Palestinian engineers from The Hebrew University of Jerusalem pioneered the use of metamaterials to create whole cuts of meat.

Skyrmions as Active Matter

Pairs of skyrmions—tiny whirlpools that emerge in some magnetic materials—might be able to self-propel, a behavior reminiscent of that of active-matter systems such as motile bacteria.

In nature, the collective motion of birds and fish can generate impressive dynamics and unique structures, as seen in flocks of starlings and shoals of sardines. The science of active matter studies such complex behaviors across a wide range of scales and origins [1], and it has attracted growing interest over the past three decades. Active matter encompasses not only living things but also inanimate objects. Examples include active colloids [2] and active liquid crystals [3] that are able to self-propel—that is, move by themselves powered by internal energy sources. Now Clécio de Souza Silva and colleagues at the Federal University of Pernambuco in Brazil have suggested an intriguing addition to the active-matter catalog: coupled pairs of skyrmions, whirlpool-like spin arrangements that emerge in certain magnetic materials.

MXene as a frame for 2D water films shows new properties

Water still has unknown sides. When water is forced into two dimensions by enclosing it in appropriate materials, new properties, phase transitions, and structures emerge. MXenes as a class of materials offer a unique platform for exploring these types of phenomena. MXenes consist of transition metal carbides and nitrides with a layered structure whose surfaces can help them absorb water easily. The water forms an extremely thin film between the individual layers.

A team led by Dr. Tristan Petit, HZB, and Yury Gogotsi, Drexel University, has investigated a series of MXene samples containing enclosed water and different ions at BESSY II using various analytical methods. The work is published in the journal Nature Communications.

X-ray revealed the formation of amorphous ice clusters in the enclosed water, which increases the distance between the MXene layers. The previously metallic MXene film then becomes a semiconductor.

A shape-changing antenna for more versatile sensing and communication

MIT researchers developed a method to design and fabricate reconfigurable antennas with adjustable frequency ranges. Users can adjust the frequency by squeezing, bending, or stretching the material, making the antenna more versatile for sensing and communication than traditional static antennas.

Unified theory may reveal more superconducting materials

Electricity flows through wires to deliver power, but it loses energy as it moves, delivering less than it started with. But that energy loss isn’t a given. Scientists at Penn State have found a new way to identify types of materials known as superconductors that allow power to travel without any resistance, meaning no energy is lost.

/* */