Menu

Blog

Archive for the ‘bioengineering’ category: Page 9

May 7, 2024

The lab-grown penis: approaching a medical milestone

Posted by in categories: bioengineering, biotech/medical

face_with_colon_three Year 2014


After decades of research, scientists are bioengineering penises in the lab, writes Dara Mohammadi.

May 7, 2024

Complete Human Penile Scaffold for Composite Tissue Engineering: Organ Decellularization and Characterization

Posted by in categories: bioengineering, biotech/medical

Year 2019 face_with_colon_three


Tan, Y., Landford, W.N., Garza, M. et al. Sci Rep 9, 16,368 (2019). https://doi.org/10.1038/s41598-019-51794-6

Download citation.

Continue reading “Complete Human Penile Scaffold for Composite Tissue Engineering: Organ Decellularization and Characterization” »

May 2, 2024

2008-jungmann-dna-nano-synth-bio.pdf

Posted by in categories: bioengineering, biotech/medical, nanotechnology

From DNA nanotechnology to synthetic biology.


Shared with Dropbox.

May 1, 2024

Marriage of synthetic biology and 3D printing produces programmable living materials

Posted by in categories: 3D printing, bioengineering, biological, genetics, sustainability

Scientists are harnessing cells to make new types of materials that can grow, repair themselves and even respond to their environment. These solid “engineered living materials” are made by embedding cells in an inanimate matrix that’s formed in a desired shape. Now, researchers report in ACS Central Science that they have 3D printed a bioink containing plant cells that were then genetically modified, producing programmable materials. Applications could someday include biomanufacturing and sustainable construction.

May 1, 2024

The science of static shock jolted into the 21st century

Posted by in categories: bioengineering, biological, chemistry, computing, mathematics, particle physics, science

Now Princeton researchers have sparked new life into static. Using millions of hours of computational time to run detailed simulations, the researchers found a way to describe static charge atom-by-atom with the mathematics of heat and work. Their paper appeared in Nature Communications on March 23.

The study looked specifically at how charge moves between materials that do not allow the free flow of electrons, called insulating materials, such as vinyl and acrylic. The researchers said there is no established view on what mechanisms drive these jolts, despite the ubiquity of static: the crackle and pop of clothes pulled from a dryer, packing peanuts that cling to a box.

“We know it’s not electrons,” said Mike Webb, assistant professor of chemical and biological engineering, who led the study. “What is it?”

Apr 26, 2024

AI-designed gene editing tools successfully modify human DNA

Posted by in categories: bioengineering, biotech/medical, chemistry, food, genetics, robotics/AI

Medically, AI is helping us with everything from identifying abnormal heart rhythms before they happen to spotting skin cancer. But do we really need it to get involved with our genome? Protein-design company Profluent believes we do.

Founded in 2022 in Berkeley, California, Profluent has been exploring ways to use AI to study and generate new proteins that aren’t found in nature. This week, the team trumpeted a major success with the release of an AI-derived protein termed OpenCRISPR-1.

The protein is meant to work in the CRISPR gene-editing system, a process in which a protein cuts open a piece of DNA and repairs or replaces a gene. CRISPR has been actively in use for about 15 years, with its creators bagging the Nobel prize in chemistry in 2020. It has shown promise as a biomedical tool that can do everything from restoring vision to combating rare diseases; as an agricultural tool that can improve the vitamin D content of tomatoes, and slash the flowering time of trees from decades to months; and much more.

Apr 26, 2024

Self-assembling synthetic cells act like living cells with extra abilities

Posted by in categories: bioengineering, biotech/medical, genetics

Using DNA and proteins, scientists have created new synthetic cells that act like living cells. Blurring the line between artificial and living materials, these cells can be reprogrammed to perform multiple functions, opening the door to new synthetic biology tech that goes beyond nature’s abilities.

Cells get their structure and stability from their cytoskeleton, a crosslinked framework of proteins that encases and protects other components. Depending on the type of cell, this cytoskeleton can be flexible to different degrees and respond in different ways to their environment, giving cells their specialized abilities.

For the new study, scientists from the University of North Carolina at Chapel Hill developed synthetic, self-assembling cytoskeletons, built out of DNA, peptides and other genetic material.

Apr 25, 2024

Designer peptide–DNA cytoskeletons regulate the function of synthetic cells

Posted by in categories: bioengineering, biotech/medical

Scientists have successfully engineered functional artificial cells in the lab that behave like living cells.


Advances in the development of cytoskeletal-like materials with modular structures and mechanics are pivotal for the engineering of synthetic cells. Now actin-mimetic supramolecular peptide networks have been designed using programmable peptide–DNA crosslinkers, giving rise to tunable tactoid-shaped bundles and mechanical properties that control spatial localization, the diffusion of payloads and shape changes within artificial cells.

Apr 24, 2024

Artificial Cells Built with Programmable Peptide-DNA Cytoskeletons

Posted by in categories: bioengineering, biotech/medical, life extension, nanotechnology

Unlike the rigid skeletons within our bodies, the skeletons within individual cells—cytoskeletons—are changeable, even fluid. And when these cytoskeletons reorganize themselves, they do more than support different cell shapes. They permit different functions.

Little wonder, then, that scientists who build artificial cells hope to create synthetic cytoskeletons that act like natural cytoskeletons. Synthetic cytoskeletons capable of supporting dynamic changes in cell shape and function could enable the development of novel drug delivery systems, diagnostic tools, and regenerative medicine applications.

Synthetic cytoskeletons have incorporated building blocks such as polymers, small molecules, carbon nanotubes, peptides, and DNA nanofilaments. Mostly DNA nanofilaments. Although they offer programmability, they can be hard to fine tune. To get around this difficulty, scientists based at UNC Chapel Hill led by Ronit Freeman, PhD, investigated the relatively unexplored possibilities offered by peptides. Specifically, the scientists engineered artificial cells using a programmable peptide–DNA nanotechnology approach.

Apr 23, 2024

Generative A.I. Arrives in the Gene Editing World of CRISPR

Posted by in categories: bioengineering, biotech/medical, robotics/AI

Generative A.I. technologies can write poetry and computer programs or create images of teddy bears and videos of cartoon characters that look like something from a Hollywood movie.

Now, new A.I. technology is generating blueprints for microscopic biological mechanisms that can edit your DNA, pointing to a future when scientists can battle illness and diseases with even greater precision and speed than they can today.

Page 9 of 214First678910111213Last