Menu

Blog

Archive for the ‘biological’ category: Page 29

Jan 18, 2024

Scientists Discover New Sense of Bottlenose Dolphins: They Feel Electricity

Posted by in category: biological

Born tail first, bottlenose dolphin calves are initially adorned with two delicate rows of whiskers along their snout, resembling the tactile whiskers of seals. However, these whiskers are shed shortly after birth, leaving behind a pattern of indentations called vibrissal pits. Recently, Tim Hüttner and Guido Dehnhardt, researchers from the University of Rostock in Germany, began to suspect that these pits might serve a purpose beyond being mere remnants.

Could they allow adult bottlenose dolphins to sense weak electric fields? Taking an initial close look, they realized that the remnant pits resemble the structures that allow sharks to detect electric fields, and when they checked whether captive bottlenose dolphins could sense an electric field in water, all of the animals felt the field.

‘It was very impressive to see,’ says Dehnhardt, who recently published the extraordinary discovery and how the animals could use their electric sense in the Journal of Experimental Biology.

Jan 18, 2024

The Iron-60 Enigma: Decoding Cosmic Explosions on Earth

Posted by in categories: biological, climatology, particle physics, space

When large stars or celestial bodies explode near Earth, their debris can reach our solar system. Evidence of these cosmic events is found on Earth and the Moon, detectable through accelerator mass spectrometry (AMS). An overview of this exciting research was recently published in the scientific journal Annual Review of Nuclear and Particle Science by Prof. Anton Wallner of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), who soon plans to decisively advance this promising branch of research with the new, ultrasensitive AMS facility “HAMSTER.”

In their paper, HZDR physicist Anton Wallner and colleague Prof. Brian D. Fields from the University of Illinois in Urbana, USA, provide an overview of near-Earth cosmic explosions with a particular focus on events that occurred three and, respectively, seven million years ago.

“Fortunately, these events were still far enough away, so they probably did not significantly impact the Earth’s climate or have major effects on the biosphere. However, things get really uncomfortable when cosmic explosions occur at a distance of 30 light-years or less,” Wallner explains. Converted into the astrophysical unit parsec, this corresponds to less than eight to ten parsecs.

Jan 18, 2024

Neural Connectivity: A Universal Network Phenomenon

Posted by in categories: biological, neuroscience, physics

Summary: A groundbreaking study by physicists and neuroscientists reveals that the connectivity among neurons stems from universal networking principles, not just biological specifics.

Analyzing various model organisms, researchers found a consistent “heavy-tailed” distribution of neural connections, guided by Hebbian dynamics, indicating that neuron connectivity relies on general network organization.

This discovery, transcending biology, potentially applies to non-biological networks like social interactions, offering insights into the fundamental nature of networking.

Jan 17, 2024

Minds in Machines: Comparing Biological and Synthetic Intelligence

Posted by in categories: biological, neuroscience, robotics/AI

The incredible explosion in the power of artificial intelligence is evident in daily headlines proclaiming big breakthroughs. What are the remaining differences between machine and human intelligence? Could we simulate a brain on current computer hardware if we could write the software? What are the latest advancements in the world’s largest brain model? Participate in the discussion about what AI has done and how far it has yet to go, while discovering new technologies that might allow it to get there.

ABOUT THE SPEAKERS

Continue reading “Minds in Machines: Comparing Biological and Synthetic Intelligence” »

Jan 17, 2024

Amazing Robot Controlled By Rat Brain Continues Progress

Posted by in categories: biological, cyborgs, robotics/AI

Some technologies are so cool they make you do a double take. Case in point: robots being controlled by rat brains. Kevin Warwick, once a cyborg and still a researcher in cybernetics at the University of Reading, has been working on creating neural networks that can control machines. He and his team have taken the brain cells from rats, cultured them, and used them as the guidance control circuit for simple wheeled robots. Electrical impulses from the bot enter the batch of neurons, and responses from the cells are turned into commands for the device. The cells can form new connections, making the system a true learning machine. Warwick hasn’t released any new videos of the rat brain robot for the past few years, but the three older clips we have for you below are still awesome. He and his competitors continue to move this technology forward – animal cyborgs are real.

The skills of these rat-robot hybrids are very basic at this point. Mainly the neuron control helps the robot to avoid walls. Yet that obstacle avoidance often shows clear improvement over time, demonstrating how networks of neurons can grant simple learning to the machines. Whenever I watch the robots in the videos below I have to do a quick reality check – these machines are being controlled by biological cells! It’s simply amazing.

Jan 16, 2024

Architecture All Access: Neuromorphic Computing Part 2

Posted by in categories: biological, education, internet, mapping, neuroscience, robotics/AI

In Neuromorphic Computing Part 2, we dive deeper into mapping neuromorphic concepts into chips built from silicon. With the state of modern neuroscience and chip design, the tools the industry is working with we’re working with are simply too different from biology. Mike Davies, Senior Principal Engineer and Director of Intel’s Neuromorphic Computing Lab, explains the process and challenge of creating a chip that can replicate some of the form and functions in biological neural networks.

Mike’s leadership in this specialized field allows him to share the latest insights from the promising future in neuromorphic computing here at Intel. Let’s explore nature’s circuit design of over a billion years of evolution and today’s CMOS semiconductor manufacturing technology supporting incredible computing efficiency, speed and intelligence.

Continue reading “Architecture All Access: Neuromorphic Computing Part 2” »

Jan 16, 2024

Architecture All Access: Neuromorphic Computing Part 1

Posted by in categories: biological, education, internet, robotics/AI

Computer design has always been inspired by biology, especially the brain. In this episode of Architecture All Access — Mike Davies, Senior Principal Engineer and Director of Intel’s Neuromorphic Computing Lab — explains the relationship of Neuromorphic Computing and understanding the principals of brain computations at the circuit level that are enabling next-generation intelligent devices and autonomous systems.

Mike’s leadership in this specialized field allows him to share the latest insights from the promising future in neuromorphic computing here at Intel. Discover the history and influence of the secrets that nature has evolved over a billion years supporting incredible computing efficiency, speed and intelligence.

Continue reading “Architecture All Access: Neuromorphic Computing Part 1” »

Jan 16, 2024

Karlheinz Meier — Neuromorphic Computing — Extreme Approaches to weak and strong scaling

Posted by in categories: biological, neuroscience, particle physics, robotics/AI

Computer simulations of complex systems provide an opportunity to study their time evolution under user control. Simulations of neural circuits are an established tool in computational neuroscience. Through systematic simplification on spatial and temporal scales they provide important insights in the time evolution of networks which in turn leads to an improved understanding of brain functions like learning, memory or behavior. Simulations of large networks are exploiting the concept of weak scaling where the massively parallel biological network structure is naturally mapped on computers with very large numbers of compute nodes. However, this approach is suffering from fundamental limitations. The power consumption is approaching prohibitive levels and, more seriously, the bridging of time-scales from millisecond to years, present in the neurobiology of plasticity, learning and development is inaccessible to classical computers. In the keynote I will argue that these limitations can be overcome by extreme approaches to weak and strong scaling based on brain-inspired computing architectures.

Bio: Karlheinz Meier received his PhD in physics in 1984 from Hamburg University in Germany. He has more than 25years of experience in experimental particle physics with contributions to 4 major experiments at particle colliders at DESY in Hamburg and CERN in Geneva. For the ATLAS experiment at the Large Hadron Collider (LHC) he led a 15 year effort to design, build and operate an electronics data processing system providing on-the-fly data reduction by 3 orders of magnitude enabling among other achievements the discovery of the Higgs Boson. Following scientific staff positions at DESY and CERN he was appointed full professor of physics at Heidelberg university in 1992. In Heidelberg he co-founded the Kirchhoff-Institute for Physics and a laboratory for the development of microelectronic circuits for science experiments. In particle physics he took a leading international role in shaping the future of the field as president of the European Committee for Future Accelerators (ECFA). Around 2005 he gradually shifted his scientific interests towards large-scale electronic implementations of brain-inspired computer architectures. His group pioneered several innovations in the field like the conception of a description language for neural circuits (PyNN), time-compressed mixed-signal neuromorphic computing systems and wafer-scale integration for their implementation. He led 2 major European initiatives, FACETS and BrainScaleS, that both demonstrated the rewarding interdisciplinary collaboration of neuroscience and information science. In 2009 he was one of the initiators of the European Human Brain Project (HBP) that was approved in 2013. In the HBP he leads the subproject on neuromorphic computing with the goal of establishing brain-inspired computing paradigms as tools for neuroscience and generic methods for inference from large data volumes.

Jan 16, 2024

New fuel cell taps energy from dirt-dwelling microbes to power sensors

Posted by in categories: biological, food

A newly invented fuel cell taps into naturally present, and ubiquitous microbes in the soil to generate power.

This soil-powered device, about the size of a regular paperback book, offers a viable alternative to batteries in underground sensors used for precision agriculture.

Northwestern University highlighted the durability of its robust fuel cell, showcasing its ability to withstand various environmental conditions, including both arid soil and flood-prone areas.

Jan 16, 2024

An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing

Posted by in categories: biological, chemistry, robotics/AI

An organic artificial neuron that is based on a compact nonlinear electrochemical element can operate in a liquid and responds to the concentration of biological species in its surroundings, allowing its behaviour to be modulated, for example, by interfacing with the membranes of living cells.

Page 29 of 217First2627282930313233Last