Toggle light / dark theme

Why do AI ethics conferences fail? They fail because they don’t have a metatheory to explain how it is possible for ethical disagreements to emerge from phenomenologically different worlds, how those are revealed to us, and how shifts between them have shaped the development of Western civilization for the last several thousand years from the Greeks and Romans, through the Renaissance and Enlightenment.

So perhaps we’ve given up on the ethics hand-wringing a bit too early. Or more precisely, a third nonzero sum approach that combines ethics and reciprocal accountability is available that actually does explain this. But first, let’s consider the flaw in simple reciprocal accountability. Yes, right now we can use chatGPT to catch Chat-GPT cheats, and provide many other balancing feedbacks. But as has been noted above with reference to the colonization of Indigenous nations, once the technological/ developmental gap is sufficiently large those dynamics which operate largely under our control and in our favor can quickly change, and the former allies become the new masters.

Forrest Landry capably identified that problem during a recent conversation with Jim Rutt. The implication that one might draw is that, though we may not like it, there is in fact a role to play by axiology (or more precisely, a phenomenologically informed understanding of axiology). Zak Stein identifies some of that in his article “Technology is Not Values Neutral”. Lastly, Iain McGilchrist brings both of these topics, that of power and value, together using his metatheory of attention, which uses that same notion of reciprocal accountability (only here it is called opponent processing). And yes, there is historical precedent here too; we can point to biological analogues. This is all instantiated in the neurology of the brain, and it goes back at least as far as Nematostella vectensis, a sea anemone that lived 700 million years ago! So the opponent processing of two very different ways of attending to the world has worked for a very long time, by opposing two very different phenomenological worlds (and their associated ethical frameworks) to counterbalance each other.

A new robot just 10 microns across is able to navigate in a physiological environment and perform a variety of tasks, both autonomously or through external control by a human operator.

Researchers from Tel Aviv University (TAU) have developed a new “hybrid micro-robot” the size of a single biological cell. This can be controlled and moved using two different mechanisms – electric and magnetic.

Researchers from Tel Aviv University, Israel, have created a micro-robot the size of a single biological cell that navigates using both electricity and magnetic fields and can identify and capture a single cell, opening the door to a vast array of applications.

Inspired by biological “swimmers” such as bacteria and sperm, the researchers developed a micro-robot (about 10 microns across) with the ability to move around the body autonomously or controlled by an operator.

Using a magnetic field to propel the micro-robot, also called a micro-motor, was attractive; it doesn’t require fuel or direct contact between the magnet and body tissues, can be steered accurately, and can function in a wide range of temperatures and solution conductivities. Electrically powered micro-motors offer advantages, such as selective cargo loading, transport and release and the ability to use electricity to “deform” cells, but they have some downsides. So, combining the two was a no-brainer.

Life comes in all shapes in sizes, but some sizes are more popular than others, new research from the University of British Columbia (UBC) has found.

In the first study of its kind published today (March 29) in PLOS ONE, Dr. Eden Tekwa, who conducted the study as a postdoctoral fellow at UBC’s department of zoology, surveyed the body sizes of all Earth’s living organisms, and uncovered an unexpected pattern. Contrary to what current theories can explain, our planet’s biomass—the material that makes up all living organisms—is concentrated in organisms at either end of the size spectrum.

“The smallest and largest organisms significantly outweigh all other organisms,” said Dr. Tekwa, lead author of “The size of life,” and now a research associate with McGill University’s department of biology. “This seems like a new and emerging pattern that needs to be explained, and we don’t have theories for how to explain it right now. Current theories predict that biomass would be spread evenly across all body sizes.”

This year’s NVIDIA GPU Technology Conference (GTC) could not have come at a more auspicious time for the company. The hottest topic in technology today is the Artificial Intelligence (AI) behind ChatGPT, other related Large Language Models (LLMs), and their applications for generative AI applications. Underlying all this new AI technology are NVIDIA GPUs. NVIDIA’s CEO Jensen Huang doubled down on support for LLMs and the future of generative AI based on it. He’s calling it “the iPhone moment for AI.” Using LLMs, AI computers can learn the languages of people, programs, images, or chemistry. Using the large knowledge base and based on a query, they can create new, unique works: this is generative AI.

Jumbo sized LLM’s are taking this capability to new levels, specifically the latest GPT 4.0, which was introduced just prior to GTC. Training these complex models takes thousands of GPUs, and then applying these models to specific problems require more GPUs as well for inference. Nvidia’s latest Hopper GPU, the H100, is known for training, but the GPU can also be divided into multiple instances (up to 7), which Nvidia calls MIG (Multi-Instance GPU), to allow multiple inference models to be run on the GPU. It’s in this inference mode that the GPU transforms queries into new outputs, using trained LLMs.

Nvidia is using its leadership position to build new business opportunities by being a full-stack supplier of AI, including chips, software, accelerator cards, systems, and even services. The company is opening up its services business in areas such as biology, for example. The company’s pricing might be based on use time, or it could be based on the value of the end product built with its services.

Squids and octopuses are masters of camouflage, blending into their environment to evade predators or surprise prey. Some aspects of how these cephalopods become reversibly transparent are still “unclear,” largely because researchers can’t culture cephalopod skin cells in the lab.

Today, however, researchers report that they have replicated the tunable transparency of some squid skin cells in mammalian cells, which can be cultured. The work could not only shed light on basic squid biology, but also lead to better ways to image many cell types.

The researchers will present their results at the spring meeting of the American Chemical Society (ACS). ACS Spring 2023 is a hybrid meeting being held virtually and in-person March 26–30, and features more than 10,000 presentations on a wide range of science topics.

Play EVE Online: https://eve.online/Ridddle_EN

In this video, we explore the fascinating prospects of humanity becoming a proper interstellar civilization, up to Type III on the Kardashev scale. However, this transition process presents our species with a bunch of physical limitations, as well as societal and even biological implications. Many of them are quite unwanted or even ugly! We explore this vast topic by using the latest scientific models as well as the best science fiction worlds from books, TV shows, and even games. Speaking of which, to help us visualize this space-faring future with much-needed scale and fidelity, we turned to CCP Games — the creators of the massively multiplayer online game EVE Online. https://eve.online/Ridddle_EN. It is set in a rich sci-fi universe, where players can create their own character and explore a vast and complex virtual world built according to the well-thought set of consistent in-world rules The game is known for its intricate economy, politics, and warfare mechanics, where players can engage in a variety of activities, including mining resources, trading, building structures, and participating in battles. Quite frankly, the game feels like a real simulation of all those future endeavors humanity will face on the way to becoming a true interstellar species!