Menu

Blog

Archive for the ‘biotech/medical’ category: Page 2673

Dec 10, 2013

NASA’s Managerial and Leadership Methodology

Posted by in categories: big data, biological, bionic, bioprinting, biotech/medical, bitcoin, business, chemistry, complex systems, cyborgs, economics, education, energy, engineering, environmental, ethics, existential risks, finance, food, futurism, genetics, geopolitics, government, health, information science, life extension, military, philosophy, physics, robotics/AI, science, scientific freedom, security, singularity, space, supercomputing, sustainability, transhumanism, transparency, transportation

This is an excerpt from the conclusion section of, “…NASA’s Managerial and Leadership Methodology, Now Unveiled!..!” by Mr. Andres Agostini, that discusses some management theories and practices. To read the entire piece, just click the link at the end of this illustrated article and presentation:

superman
In addition to being aware and adaptable and resilient before the driving forces reshaping the current present and the as-of-now future, there are some extra management suggestions that I concurrently practice:

1. Given the vast amount of insidious risks, futures, challenges, principles, processes, contents, practices, tools, techniques, benefits and opportunities, there needs to be a full-bodied practical and applicable methodology (methodologies are utilized and implemented to solve complex problems and to facilitate the decision-making and anticipatory process).

The manager must always address issues with a Panoramic View and must also exercise the envisioning of both the Whole and the Granularity of Details, along with the embedded (corresponding) interrelationships and dynamics (that is, [i] interrelationships and dynamics of the subtle, [ii] interrelationships and dynamics of the overt and [iii] interrelationships and dynamics of the covert).

Continue reading “NASA's Managerial and Leadership Methodology” »

Dec 10, 2013

How nanotechnology can trick the body into accepting fake bones

Posted by in categories: biotech/medical, health, nanotechnology

Altering the surface of orthopaedic implants has already helped patients – and nanotech can fight infections too

One of medicine’s primary objectives is to trick the body into doing something it doesn’t want to do. We try to convince our immune systems to attack cancer cells (our immune systems don’t normally attack our own bodies), we try to convince neurons to regrow (another unnatural phenomenon), and we try to convince the body to accept foreign bits, such as someone else’s kidney or a fake bone. In order to accomplish this, we try to make parts of our bodies we don’t want, such as cancers, look foreign. We try to make foreign bits that we do want, such as orthopaedic implants, look natural. Nanotechnology, as you might have guessed, can help us do just that.

Read more

Dec 9, 2013

IBM Creates Nanotechnology to Battle Fungal Infections

Posted by in categories: biotech/medical, environmental, nanotechnology

Tim Parker, Benzinga Staff Writer

Before scientists create something that has mainstream uses, it often starts as science fiction.

A new technology deep within IBM’s (NYSE: IBM [FREE Stock Trend Analysis]) Singapore research facility isn’t quite ready for the mainstream but when it is, the implications for those who suffer from fungal infections and later, other infections, could have a new ally in their fight but this ally is completely different than current treatments.

If you’re a fan of Star Trek, you’ve seen nanotechnology. These are microscopic machines that get inside machines or in this case, the body, to identify and fix problems.

Continue reading “IBM Creates Nanotechnology to Battle Fungal Infections” »

Dec 9, 2013

New artificial, bionic hands start to get real feelings

Posted by in categories: bionic, biotech/medical

By

Bebionic3

Simple tasks, like plucking the stem off a cherry, are still monumental challenges for artificial hands. With a bill of materials perhaps a few hundred components long, it is not surprising that their functionality is low compared with one assembled from trillions of components. A new prosthetic bionic hand, designed and built by researchers at Case Western University is now capable of using measurements from 20 sensor points to control the grip force of its digits. Incredibly, the sensor data is linked directly to the sensory nerves in the patient’s forearm. The control for the grip closure is then extracted myoelectrically from the normal biological return loop to the muscles in the forearm.

Read more

Dec 8, 2013

Google Glass Makes Its Way Into Operating Rooms

Posted by in categories: biotech/medical, health

Written By:

surgery

Hands-free devices like Google Glass can be really transformative when the hands they free are those of a surgeon. And leading hospitals, including Stanford and the University of California at San Francisco, are beginning to use Glass in the operating room.

In October, UCSF’s Pierre Theodore, a cardiothoracic surgeon, became the first doctor in the United States to obtain Institutional Review Board approval to use the device to assist him during surgery. Theodore pre-loads onto Glass the scans of images of the patient taken just before surgery and consults them during the operation.

Continue reading “Google Glass Makes Its Way Into Operating Rooms” »

Dec 4, 2013

How 3D Printers Are Cranking Out Eyes, Bones, and Blood Vessels

Posted by in categories: 3D printing, bioprinting, biotech/medical, health

Kelsey Campbell-Dollaghan on Gizmodo

How 3D Printers Are Cranking Out Eyes, Bones, and Blood Vessels

At the dawn of rapid prototyping, a common predication was that 3D printing would transform manufacturing, spurring a consumer revolution that would put a printer in every home. That hasn’t quite happened—-and like so many emerging technologies, rapid prototyping has found its foothold in a surprisingly different field: Medicine.

The following studies and projects represent some of the most fascinating examples of “bioprinting,” or using a computer-controlled machine to assemble biological matter using organic inks and super-tough thermoplastics. They range from reconstructing major sections of skull to printing scaffolding upon which stem cells can grow into new bones. More below—and look out for more 3D printing week content over the next few days.

Read more

Dec 2, 2013

Body piercing controls wheelchair

Posted by in categories: biotech/medical, engineering, robotics/AI

Tongue piercing

Body piercings have been used to control wheelchairs and computers in a move scientists believe could transform the way people interact with the world after paralysis.

Continue reading “Body piercing controls wheelchair” »

Dec 2, 2013

Hair, bone and soft tissue regrown in mice by enhancing cell metabolism

Posted by in categories: biotech/medical, genetics

By

November 11, 2013

Anyone who has left youth behind them knows that bumps and scrapes don’t heal as fast as they used to. But that could change with researchers at the Stem Cell Program at Boston Children’s Hospital finding a way to regrow hair, cartilage, bone, skin and other soft tissues in a mouse by reactivating a dormant gene called Lin28a. The discovery could lead to new treatments that provide adults with the regenerative powers they possessed when very young.

Lin28 is a gene that is abundant in embryonic stem cells and which functions in all organisms. It is thought to regulate the self-renewal of stem cells with the researchers finding that by promoting the production of certain enzymes in mitochondria, it enhances the metabolism of these cellular power plants that found in most of the cells of living organisms. In this way, Lin28 helps generate the energy needed to stimulate the growth of new tissues.

Continue reading “Hair, bone and soft tissue regrown in mice by enhancing cell metabolism” »

Dec 2, 2013

Kurzweil Accelerating Intelligence — Remote virtual surgery via Google Glass and telepresence

Posted by in categories: biotech/medical, robotics/AI

A University of Alabama at Birmingham (UAB) surgical team has performed one of the first surgeries using a telepresence augmented reality technology from VIPAAR in conjunction with Google Glass.

The combination of the two technologies could be an important step toward the development of useful, practical telemedicine.

VIPAAR (Virtual Interactive Presence in Augmented Reality) is commercializing a UAB-developed technology that provides real-time, two-way, interactive video conferencing.


Read more

Nov 21, 2013

Defying Aging: The ELPIs Foundation for Indefinite Lifespans

Posted by in categories: biotech/medical, evolution, life extension

In is now quite clear that aging is not a simple phenomenon and it will not be overcome by using simple approaches. We need to increase the complexity and sophistication of our efforts in order to be in a better position to develop strategies against it. For this reason, I set up the ELPIS Foundation for Indefinite Lifespans (www.elpisfil.org) which is a scientific research organisation aiming to study aging from a complex evolutionary perspective.

The foundation’s research methodology is based mainly upon the ELPIS hypothesis (www.elpistheory.info). The initials stand for ‘Extreme Lifespans through Perpetual –equalising Interventions’. I developed this hypothesis in 2010 whilst trying to examine the reason behind the presence of aging. It was clear that aging is not an essential component of our evolutionary development, and if we find ways to study why nature has developed it, we may then be able to eradicate it. Currently, the chances of us dying from aging are heavily against us. By developing suitable interventions, we may be able to equalise the odds against us dying (i.e. remove aging as a cause of death).

Our method is different from most existing approaches aiming to eliminate aging. We are mainly interested in the ‘connection-approach’ and not so much in the ‘component-approach’. We believe that it is important to study how the different components of the organism are interconnected and regulated, rather than just repair the individual components. It is the ‘why aging happens’ rather than the ‘how it happens’ that interests us most. In order to make this clear let me mention an analogy with poliomyelitis.

Polio
*How it happens? There is inflammation and necrosis leading to damage of motor neurons and, ultimately, muscle weakness and paralysis
* Why it happens? Because the poliovirus causes it

Continue reading “Defying Aging: The ELPIs Foundation for Indefinite Lifespans” »