Toggle light / dark theme

Scientists at Vanderbilt University have developed a first-ever implantable artificial kidney. The artificial kidney contains a microchip filter and living kidney cells that can function using the patient’s heart, and this bio-synthetic kidney acts like the real organ, removing salt, water and waste products to keep patients with kidney failure from relying on dialysis.

The key to this new development is a breakthrough in the microchip itself, which uses silicon nanotechnology. “[Silicon nanotechnology] uses the same processes that were developed by the microelectronics industry for computers,” said Dr. William H. Fissell IV, who led the team that developed the device.

The microchips are affordable, precise, and function as an ideal filter.

Read more

Researchers have developed machine learning software that can accurately diagnose a patient’s breast cancer risk 30 times faster than doctors, based on mammogram results and personal medical history.

The system could help doctors give better diagnoses the first time around — which means fewer mammogram callbacks and false positives.

“This software intelligently reviews millions of records in a short amount of time, enabling us to determine breast cancer risk more efficiently using a patient’s mammogram,” said one of the researchers, Stephen Wong, from Houston Methodist Research Institute. “This has the potential to decrease unnecessary biopsies.”

Read more

That brought a lot of media attention, and Giorgio got skittish. “They didn’t want to have the perception from customers that their company was developing genetically modified organisms,” says Yang. Yang is still working to perfect the anti-browning in his academic lab, but he has no immediate plans to commercialize it.

The anti-browning trait might also just be a tough sell to customers: When a Canadian apple wanted to sell a GM apple that doesn’t brown—genetically altered through conventional means—it had to battle assumptions that growers just wanted to hide bruised produce. Which is, well, true. Produce that doesn’t brown when handled does also mean less waste for stores and growers.

In Sweden, Jansson is no stranger to unease over genetic engineering. His colleagues recently returned from a conference where activists flung cow dung and eggs at scientists. The CRISPR-edited cabbage he grew he actually got from researchers outside Sweden, who did not want their names or even their country revealed, fearing backlash from environmental activists. Jansson did his cabbage stunt because he wanted people to start thinking about what CRISPR could mean for food.

Read more

This is wild: a team of Israeli scientists developed a contraption that uses a person’s brain waves to remotely control DNA-based nanorobots — while the nanobots were inside a living cockroach. When prompted by a human thought, the clam shell-like robots opened up, revealing a drug-like molecule that tweaked the physiology of the cockroach’s cells.

Though “merely a demonstration and proof of concept,” the technology represents a new era of brain-nanomachine interfaces that links a person’s mental state to bioactive payloads such as drugs. Future techniques that build upon this prototype could be helpful for schizophrenia, depression or other mental disorders, in that the drugs only activate when a patient’s brain waves show signs of abnormality.

Talk about the power of positive thinking!

Read more

A team of physicists from the US, Germany and Russia have devised a method of detecting blood clotting with the help of a laser beam, RIA Novosti reported, citing an article carried by the latest issue of PLOS ONE scientific journal.

“We have demonstrated how you can detect blood clots using photoacoustic flow-cytometry. We will potentially be able to destroy them right away, but this requires additional research,” Alexander Melerzanov, a senior fellow at Moscow’s Institute of Physics and Technology, told RIA.

Formation of clots in the blood stream is the main cause of strokes and heart attacks. Breaking loose in the bloodstream they can clog arteries often resulting in a patient’s death.

Read more

It has officially been one year since I volunteered to take the first gene therapy to treat biological aging. It has been an amazing year! It began with a great deal of excitement in the weeks leading up to taking the treatment. The excitement of treatment day was followed by months of anticipation before the letdown of not magically reversing visual aging and becoming a 20-year-old biologically again. Even so, the year has been filled with energizing information gleaned from every additional molecular biomarker test that we have done. In this post, I will try to summarize my feelings on several topics as they have evolved throughout the year.

First in Human Use

Being the first person to use any new medical treatment is a complicated endeavor. It is infinitely more complicated when we don’t know the possible outcomes, the perfect dosage, the regimen, or the optimal delivery method. With all of these uncertainties, one is constantly aware that all the excitement and hopes could be squelched in moments. For the same reasons, every small success seems unbelievable, even though they are the results we wanted.

Read more

Our eyes are one of our most complex body parts, made up of numerous delicate cell structures that work together seamlessly to allow us to see. Conditions like far-sightedness, glaucoma, and cataracts are widespread, and it’s no wonder given the fragile nature of the eye’s many components.

In the worst-case scenario, optical cells malfunction to the point of blindness. But a group of scientists at the University of Melbourne in Australia recently took a critical step towards alleviating and even curing a common vision problem. Added to groundbreaking work in other areas, blindness could become an affliction of the past.

Read more

As you relax and let your mind drift aimlessly, you might remember a pleasant vacation, an angry confrontation in traffic or maybe the loss of a loved one.

And now a team of researchers at Duke University say they can see those various emotional states flickering across the human brain.

“It’s getting to be a bit like mind-reading,” said Kevin LaBar, a professor of psychology and neuroscience at Duke. “Earlier studies have shown that functional MRI can identify whether a person is thinking about a face or a house. Our study is the first to show that specific emotions like fear and anger can be decoded from these scans as well.”

Read more