Toggle light / dark theme

A few weeks ago, up to 40 people from the Yamal Peninsula in Siberia were hospitalized after a heatwave thawed permafrost, releasing a “zombie outbreak” of anthrax. Now, the Siberian Times reports that experts fear the thawing could spell the return of the eradicated smallpox virus.

During the 1800s, there were repeated outbreaks of smallpox in a small Siberian town, with hundreds of bodies buried near the banks of the Kolyma River. Some 120 years later, this summer’s heatwave has been melting the permafrost surrounding the town at a rate three times faster than usual. This has increased water levels in the river and is subsequently eroding away its banks where the bodies are buried.

While the risk at the moment is low, and with scientists aware of the issue for some time now, the current troubles of permafrost around the site and the Kolyma River are ringing alarms.

Read more

How will we interact with the intelligent machines of the future? If you’re asking Bryan Johnson, founder of startup Kernel, he’ll tell you those machines should be implanted inside our brains.

His team is working with top neuroscientists to build a tiny brain chip—also known as a neuroprosthetic —to help people with disease-related brain damage. In the long term, though, Johnson sees the product applicable to anyone who wants a bit of a brain boost.

Yes, some might flag this technology as yet another invention leading us toward a future where technology just helps the privileged get further in life.

Read more

A team of Harvard Medical School scientists, which includes genetics professor George Church, have designed a bacterial genome that has been rewritten on a massive scale, with changes in more than 62,000 spots.

They haven’t used it to make living E. coli yet, but the findings, reported today in Science, mark progress towards genetically engineered bacteria that could make new materials without risk of exchanging genes with organisms in the wild.

“It‘s an important step forward for demonstrating the malleability of the genetic code and how entirely new types of biological functions and properties can be extracted from organisms through genomes that have been recoded,” Farren Isaacs of Yale University, who has worked with the team in the past, told Nature.

Read more

Is Market Capitalism simply an accident of certain factors that came together in the 19th and 20th centuries? Does the innovation of economics require a new economics of innovation? Is the study of economics deeply affected by the incentive structures faced by economists themselves, necessitating a study of the “economics of economics”? In this broad ranging interview INET Senior Economist Pia Malaney sits down with Eric Weinstein — mathematician, economist, Managing Director of Thiel Capital (as well as her co-author and husband) to discuss these and other issues.

Underlying the seismic shifts in the economy in the last ten years, Dr. Weinstein sees not just a temporary recession brought on by a housing crisis, but rather deep and fundamental shifts in the very factors that made market capitalism the driving force of economic growth for the past two centuries. The most profound of these shifts as Dr. Weinstein sees it, is an end to 20th century style capitalism brought about not by a competing ideology, as many had once feared, but instead by changing technology. As production is driven increasingly by bits rather than atoms, he sees the importance of private goods give way to public goods, undermining a basic requirement of market models. In a different line of thinking, as software becomes increasingly sophisticated it takes on the ability to replace humans not only in low level repetitive tasks but also, with the use of deep learning algorithms, in arbitrarily complex repetitive tasks such as medical diagnosis.

Read more

August 19th, 2016 – Creative Peptides, a professional supplier of peptides manufacturing upon academic, clinical, commercial and government laboratories in diverse applications, has released its efficient Glycopeptide Synthesis service, to help speed up the advance in solid phase methods.

Nowadays, glycopeptides have played a pivotal role in a myriad of organisms and systems, such as biology, physiology, medicine, bioengineering and technology, etc. As is known, synthetic glycopeptides are able to offer an unique frontier for research in glycobiology and proteomics as well as for drug discovery & development, drug delivery & targeting, diagnostics development and biotechnological applications, which also promotes the development of modern biomarker discovery process.

Based on rapid achievements in peptides research, increasing number of scientists are trying to discover more effective methods in modern scientific research, such as deslorelin acetate, aviptadil acetate, Chimeric Peptides, and so on. Technically, the Glycan chains of glycopeptides are involved in numerous biological recognition events, including protein folding, cell-cell communication and adhesion, cell growth and differentiation, as well as bacterial and viral infection. Actually, a framework of probing human implicit intentions for the purpose of augmented cognition has been described at Creative Peptides in recent days, which helps more and more people gain new insights in peptide application.

Read more

3D Map of the cell-building protein tied to cancer.


The unprecedented view of the protein doublecortin kinase like domain 1 (DCLK1) could provide clues to how it contributes to cancer formation and progression.

DCLK1 is a protein that assembles scaffolds within cells called microtubules. These rope-like structures give cells shape, enable movement and cell division, and are crucial in enabling the growth and spread of cancer cells. More than one in 10 stomach cancers have defective forms of DCLK1, which have also been found in kidney, rectal and pancreatic cancers.

Walter and Eliza Hall Institute scientists Dr Onisha Patel and Dr Isabelle Lucet used the Australian Synchrotron to reveal the three-dimensional structure of a part of DCLK1 known as the ‘kinase domain’.

Read more

We are entering an era of directed design in which we will expand the limited notion that biology is only the ‘study of life and living things’ and see biology as the ultimate distributed, manufacturing platform (as Stanford bioengineer, Drew Endy, often says). This new mode of manufacturing will offer us unrivaled personalization and functionality.

New foods. New fuels. New materials. New drugs.

We’re already taking our first steps in this direction. Joule Unlimited has engineered bacteria to convert CO2 into fuels in a single-step, continuous process. Others are engineering yeast to produce artemisinin — a potent anti-malarial compound used by millions of people globally. Still other microbes are being reprogrammed to produce industrial ingredients, like those used in synthetic rubber.

Read more