Toggle light / dark theme

First Artificial Neurons That Might Communicate With Living Cells

A team of engineers at the University of Massachusetts Amherst has announced the creation of an artificial neuron with electrical functions that closely mirror those of biological ones. Building on their previous groundbreaking work using protein nanowires synthesized from electricity-generating bacteria, the team’s discovery means that we could see immensely efficient computers built on biological principles which could interface directly with living cells.

“Our brain processes an enormous amount of data,” says Shuai Fu, a graduate student in electrical and computer engineering at UMass Amherst and lead author of the study published in Nature Communications. “But its power usage is very, very low, especially compared to the amount of electricity it takes to run a Large Language Model, like ChatGPT.”

The human body is over 100 times more electrically efficient than a computer’s electrical circuit. The human brain is composed of billions of neurons, specialized cells that send and receive electrical impulses all over the body. While it takes only about 20 watts for your brain to, say, write a story, a LLM might consume well over a megawatt of electricity to do the same task.

Scientists Discover Cancer’s “Power-Up” — and a New Way To Switch It Off

The discovery of a defensive mechanism could help stop cancer before it spreads. Cancer cells rapidly increase their energy output when physically squeezed, according to a study in Nature Communications. This immediate burst of energy is the first documented defensive response that helps cells repair DNA damage and endure the crowded conditions inside the human body.

Ancient viral DNA is essential for human embryo development, study shows

Our ancient past isn’t always buried history. When it comes to our DNA, nearly 9% of the human genome is made up of leftover genetic material from ancient viruses (called endogenous retroviruses or ERVs) that infected our ancestors millions of years ago and became permanently integrated into our genetic code. In a new study published in the journal Nature, scientists have demonstrated that one piece of this viral junk is essential for the earliest stages of human life.

Genetic and behavioral links found between musical rhythm perception and developmental language disorders

In a paper published in Nature Communications, researchers at Vanderbilt University Medical Center’s Department of Otolaryngology–Head and Neck Surgery leveraged two main studies—one focused on behavior and one focused on genetics—to highlight the correlation between participants’ musical rhythm abilities and developmental speech-language disorders.

These disorders include , dyslexia and stuttering, among others.

Evidence showed that deficiency in musical perception is a “modest but consistent risk factor for developmental speech, language and reading disorders,” according to the study’s lead author, Srishti Nayak, Ph.D., assistant professor of Otolaryngology-Head and Neck Surgery.

Mapping RNA-protein ‘chats’ could uncover new treatments for cancer and brain disease

Bioengineers at the University of California San Diego have developed a powerful new technology that can map the entire network of RNA-protein interactions inside human cells—an achievement that could offer new strategies for treating diseases ranging from cancer to Alzheimer’s.

RNA-protein interactions regulate many essential processes in cells, from turning genes on and off to responding to stress. But until now, scientists could only capture small subsets of these interactions, leaving much of the cellular “conversation” hidden.

“This technology is like a wiring map of the cell’s conversations,” said Sheng Zhong, professor in the Shu Chien-Gene Lay Department of Bioengineering at the UC San Diego Jacobs School of Engineering, who led the study published in Nature Biotechnology.

Designing random nanofiber networks, optimized for strength and toughness

In nature, random fiber networks such as some of the tissues in the human body, are strong and tough with the ability to hold together but also stretch a lot before they fail. Studying this structural randomness—that nature seems to replicate so effortlessly—is extremely difficult in the lab and is even more difficult to accurately reproduce in engineering applications.

Recently, researchers at The Grainger College of Engineering, University of Illinois Urbana-Champaign and the Rensselaer Polytechnic Institute devised a method to repeatedly print random polymer nanofiber networks with desired characteristics and use to tune the random network characteristics for improved strength and toughness.

“This is a big leap in understanding how nanofiber networks behave,” said Ioannis Chasiotis, a professor in the Department of Aerospace Engineering. “Now, for the first time, we can reproduce randomness with desirable underlying structural parameters in the lab, and with the companion computer model, we can optimize the to find the network parameters, such as nanofiber density, that produce simultaneously higher network strength, stiffness and toughness.”

Finding buried treasures with physics: ‘Fingerprint matrix’ method uncovers what lies beneath the sand

Can we reveal objects that are hidden in environments completely opaque to the human eye? With conventional imaging techniques, the answer is no: a dense cloud or layer of material blocks light so completely that a simple photograph contains no information about what lies behind it.

However, a between the Institut Langevin and TU Wien has now shown that, with the help of innovative mathematical tricks, objects can be detected even in such cases—using what is known as the fingerprint .

The team tested the newly developed method on metal objects buried in sand and in applications in the field of medical imaging. A joint publication on this topic has just been published in the journal Nature Physics.

Meet Irene Curie, the Nobel-winning atomic physicist who changed the course of modern cancer treatment

The adage goes “like mother like daughter,” and in the case of Irene Joliot-Curie, truer words were never spoken. She was the daughter of two Nobel Prize laureates, Marie Curie and Pierre Curie, and was herself awarded the Nobel Prize in chemistry in 1935 together with her husband, Frederic Joliot.

While her parents received the prize for the discovery of natural radioactivity, Irene’s prize was for the synthesis of artificial radioactivity. This discovery changed many fields of science and many aspects of our everyday lives. Artificial radioactivity is used today in medicine, agriculture, energy production, food sterilization, industrial quality control and more.

We are two nuclear physicists who perform experiments at different accelerator facilities around the world. Irene’s discovery laid the foundation for our experimental studies, which use artificial radioactivity to understand questions related to astrophysics, energy, medicine and more.

Rising early-onset cancer diagnoses in the US appear to be driven by increased detection, not disease

Harvard Medical School, Brigham and Women’s Hospital, and Dell Medical School researchers report that rising rates of early-onset cancer in the United States may reflect more diagnoses rather than more disease.

Cancer awareness and prevention have intensified over many decades, removing potential environmental risk factors from daily life. Mortality of all cancers combined in adults under 50 has decreased by nearly half since the 1990s.

Still, public concern has climbed amidst rising diagnoses and high-profile early-onset cases. PubMed citations related to early-onset cancer more than tripled and screening ages have been shifted down to 45 for and 40 for breast cancer. Uncertainty persists about whether the higher case counts signal greater cancer occurrence or more frequent detection.

/* */