Menu

Blog

Archive for the ‘biotech/medical’ category: Page 8

Aug 30, 2024

Dr. Deborah Sesok-Pizzini, MD, MBA — Chief Medical Officer & Senior VP, Labcorp Diagnostics

Posted by in categories: biotech/medical, business, finance, health

Innovative Diagnostic Solutions To Enhance Patient Experiences And Health Provider Decisions — Dr. Deborah Sesok-Pizzini, MD, MBA — Chief Medical Officer & Senior Vice President, Labcorp Diagnostics; Global Head of Quality And Discipline Director, Immunohematology.


Dr. Deborah Sesok-Pizzini, MD, MBA, is Chief Medical Officer And Senior Vice President, Labcorp Diagnostics, and Global Head of Quality And Discipline Director, Immunohematology, Labcorp (https://www.labcorp.com/deborah-sesok…), where she is involved in furthering the company’s initiatives to enhance the patient experience, enable health provider decisions and develop innovative testing solutions.

Continue reading “Dr. Deborah Sesok-Pizzini, MD, MBA — Chief Medical Officer & Senior VP, Labcorp Diagnostics” »

Aug 30, 2024

Tiny new lasers fill a long-standing gap in the rainbow of visible-light colors

Posted by in categories: biotech/medical, computing

It’s not easy making green.

For years, scientists have fabricated small, high-quality lasers that generate red and blue light. However, the method they typically employ — injecting electric current into semiconductors — hasn’t worked as well in building tiny lasers that emit light at yellow and green wavelengths. Researchers refer to the dearth of stable, miniature lasers in this region of the visible-light spectrum as the “green gap.” Filling this gap opens new opportunities in underwater communications, medical treatments and more.

Compact laser diodes can emit infrared, red and blue wavelengths, but are highly inefficient at producing green and yellow wavelengths, a region known as the ‘green gap’. (Image: S. Kelley, NIST)

Aug 30, 2024

Scientists unlock the secrets of how a key protein converts DNA into RNA

Posted by in category: biotech/medical

Researchers at the Department of Energy’s SLAC National Accelerator Laboratory have uncovered new insights into the fundamental mechanisms of RNA polymerase II (Pol II), the protein responsible for transcribing DNA into RNA. Their study shows how the protein adds nucleotides to the growing RNA chain. The results, published in Proceedings of the National Academy of Sciences, have potential applications in drug development.

Aug 29, 2024

Mitochondria Are Flinging Their DNA into Our Brain Cells

Posted by in categories: biotech/medical, neuroscience

A new study finds that mitochondria in our brain cells frequently fling their DNA into the cells’ nucleus, where the mitochondrial DNA integrates into chromosomes, possibly causing harm.

Aug 29, 2024

New Nanoparticle Cancer Treatment Successfully Shrinks and Eliminates Pancreatic Tumors

Posted by in categories: biotech/medical, nanotechnology

Innovative research has led to a new treatment for pancreatic cancer that utilizes nanoparticles to stimulate immune responses and improve drug delivery.

This strategy has produced significant results, with eight out of nine mice showing tumor improvements and two seeing their tumors completely eradicated. This approach holds promise for broader applications in oncology.

Innovative Pancreatic Cancer Therapy Development.

Aug 29, 2024

New Biomedical Device Offers Rapid Relief for Chronic Pain Patients

Posted by in categories: biotech/medical, engineering

How can ultrasonic waves be used to treat chronic pain? This is what a recent study published in the journal Pain hopes to address as a team of researchers investigated how a noninvasive treatment known as Diadem, which is a novel biomedical device designed to use ultrasonic waves for combating chronic pain. This study holds the potential to help researchers develop more effective methods at treating chronic pain aside from invasive, surgical treatments.

For the study, the researchers enlisted 20 patients who suffer from chronic pain to participate in trials for the Diadem device or sham stimulations, the latter of which involved auditory masking that has been used in previous research. Each patient received two 40-minute sessions comprised of either the Diadem or sham treatments, followed by being monitored for one week. In the end, the researchers found that 60 percent of patients were received the Diadem treatments reported improved pain management on day 1 and day 7. In contrast, 15 percent and 20 percent of patients who received the sham treatment reported the same for day 1 and day 7, respectively.

“If you or your relatives suffer from chronic pain that does not respond to treatments, please reach out to us; we need to recruit many participants so that these treatments can be approved for the general public,” said Dr. Jan Kubanek, who is an assistant professor in the Department of Biomedical Engineering at the University of Utah and a co-author on the study. “With your help, we think chronic pain can be effectively silenced. And with new pain treatment options, we can tackle the opioid crisis, too.”

Aug 29, 2024

High frequency oscillations in human memory and cognition: a neurophysiological substrate of engrams?

Posted by in categories: biotech/medical, neuroscience

The results published by Tong et al. 60 reconcile the previous observations that increased power across a broad range of frequencies is composed of multiple HFO bursts detected at discrete frequencies. 32, 33, 85 In Figs 2 and 3, we summarize the general mechanism from micro-scale ensembles of firing neurons, through bursts of individual HFOs detected in particular trials at specific frequencies, to the resultant trial-averaged enhanced power across a broad frequency range. Coordinated firing in response to a stimulus presentation gives rise to HFOs at particular frequencies depending on the size and spread of the underlying neural ensemble (Fig. 3A and C). Other ensembles generate HFOs at particular frequencies in response to stimuli in subsequent trials. Eventually, multiple trials result in a uniform shift in power across a broad frequency range of the spectrum relative to a pre-stimulus baseline (Fig. 3C). Detections from specific trials can be displayed together as points at their corresponding peak-amplitude on a cumulative time-frequency plot, producing a pattern closely overlapping with the trial-averaged power spectrogram (Fig. 3D).

This is an explanation for the resultant broadband shift in power across the high-frequency spectrum associated with cognitive and motor tasks and increased neural firing, 92–95 which argued against oscillations at particular frequency bands. If the intermediate step of detecting individual bursts of oscillations on a trial-by-trial basis is skipped, the overall trial-averaged power will be most highly correlated with general firing rates in the entire neural population without any common temporal pattern or coordination to oscillations. If, however, independent constituent bursts of oscillations and the underlying firing in subsets of neural ensembles are first resolved one by one, then multiple patterns of coordinated activity emerge. In this large-scale mechanism, coordinated electrical activity from multiple neural sources generating oscillations at distinct frequencies could explain the broadband shifts in power across the spectrum. 24 Separate sources of HFO bursts detected at various frequencies remain to be demonstrated on the macro-and micro-recording scales.

Assuming that individual HFOs can indeed be separated based on their spectral features 96–98 and thus identify particular sources of LFP activities, it should be possible to resolve the neurophysiological substrates of memory and cognition proposed in our title question. High frequency LFP activities were suggested to track particular neuronal assemblies on the level of micro-contact LFP in rodents. 91 Intracranial recordings in non-human primates 86, 87 and in human patients 22, 32, 85 can also resolve distinct bursts in the frequency-time space of individual trials, which could hypothetically be the features of particular neuronal assemblies. 24 HFO bursts beyond the ripple frequency range, which were shown to be generated very locally on the scale of a single cortical column, 64 would correspond to arguably the fundamental level of neural organization and information processing. 99 In the next section, we will review the roles of temporal coordination in gamma and higher frequencies in supporting processes of memory and cognition.

Aug 29, 2024

Para-astronaut John McFall hopes to see an ISS astronaut with a disability fly by 2030 (exclusive, video)

Posted by in categories: biotech/medical, cyborgs, health

Astronaut John McFall hopes to see an ISS astronaut with a disability fly by 2030 — video.


A European Space Agency (ESA) reserve astronaut, McFall was selected for the program in 2022 based on his experience as a trauma and orthopedic specialist, surgeon and exercise scientist. McFall also has lived experience with a disability as he has used prosthetics regularly since the amputation of his right leg at age 19, following a motorcycle accident. (He even won a bronze medal in the 2008 Paralympics in the 100-meter sprint, class T42.)

A recent study dubbed “Fly!” — in which McFall played a key role — found there would be no major issues to International Space Station missions should an astronaut use a prosthesis on board. There is more work to be done, but the goal is for it all to culminate in flying “someone with a physical disability” to the ISS, McFall told Space.com in an exclusive interview on Aug. 8. “By the end of this decade, hopefully that would have happened.”

Aug 29, 2024

Building Living Bridges with Anthrobots

Posted by in categories: biotech/medical, robotics/AI

Researchers used adult human cells to craft biological robots capable of movement and more.

Aug 29, 2024

Twists of Fate: How 50,000 Mysterious DNA Knots Could Help Cure Diseases Like Cancer

Posted by in categories: biotech/medical, innovation

An innovative study of DNA ’s hidden structures may open up new approaches for the treatment and diagnosis of diseases, including cancer.

Researchers at the Garvan Institute have unveiled the first comprehensive map of over 50,000 i-motifs in the human genome, structures distinct from the classic double helix that may play crucial roles in gene regulation and disease. These findings highlight the potential of i-motifs in developing new therapies, particularly in targeting genes associated with cancers.

Continue reading “Twists of Fate: How 50,000 Mysterious DNA Knots Could Help Cure Diseases Like Cancer” »

Page 8 of 2,681First56789101112Last