Menu

Blog

Archive for the ‘computing’ category: Page 173

Dec 21, 2023

Researchers create first programmable, logical quantum processor

Posted by in categories: biotech/medical, computing, finance, quantum physics

Harvard researchers have realized a key milestone in the quest for stable, scalable quantum computing, an ultra-high-speed technology that will enable game-changing advances in a variety of fields, including medicine, science, and finance.

The team, led by Mikhail Lukin, the Joshua and Beth Friedman University Professor in physics and co-director of the Harvard Quantum Initiative, has created the first programmable, logical quantum processor, capable of encoding up to 48 logical qubits, and executing hundreds of logical gate operations, a vast improvement over prior efforts.

Published in Nature, the work was performed in collaboration with Markus Greiner, the George Vasmer Leverett Professor of Physics; colleagues from MIT; and QuEra Computing, a Boston company founded on technology from Harvard labs.

Dec 20, 2023

Magnetization by Laser Pulse: A Futuristic Twist in Material Science

Posted by in categories: computing, particle physics, science

A research team has revealed that ultrashort laser pulses can magnetize iron alloys, a discovery with significant potential for applications in magnetic sensor technology, data storage, and spintronics.

To magnetize an iron nail, one simply has to stroke its surface several times with a bar magnet. Yet, there is a much more unusual method: A team led by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) discovered some time ago that a certain iron alloy can be magnetized with ultrashort laser pulses. The researchers have now teamed up with the Laserinstitut Hochschule Mittweida (LHM) to investigate this process further. They discovered that the phenomenon also occurs with a different class of materials – which significantly broadens potential application prospects. The working group presents its findings in the scientific journal Advanced Functional Materials.

Breakthrough Discovery in Magnetization.

Dec 20, 2023

Harvard Unveils Innovative Approach to High-Temperature Superconductors

Posted by in categories: computing, quantum physics

Fabrication method could facilitate materials discovery. Harvard team led by Philip Kim innovates in high-temperature superconductors using cuprates. Developed the world’s first superconducting diode, advancing quantum computing.

Dec 20, 2023

Spintronics Breakthrough — Scientists Confirm a Previously Undetected Physics Phenomenon

Posted by in categories: computing, particle physics, quantum physics, satellites

In a new breakthrough, researchers have used a novel technique to confirm a previously undetected physics phenomenon that could be used to improve data storage in the next generation of computer devices.

Spintronic memories, utilized in advanced computers and satellites, leverage the magnetic states produced by the intrinsic angular momentum of electrons for data storage and retrieval. Depending on its physical motion, an electron’s spin produces a magnetic current. Known as the “spin Hall effect,” this has key applications for magnetic materials across many different fields, ranging from low-power electronics to fundamental quantum mechanics.

More recently, scientists have found that electrons are also capable of generating electricity through a second kind of movement: orbital angular momentum, similar to how Earth revolves around the sun. This is known as the “orbital Hall effect,” said Roland Kawakami, co-author of the study and a professor in physics at The Ohio State University.

Dec 20, 2023

Synaptic transistor models higher-level thinking mimics human intelligence

Posted by in categories: computing, neuroscience

Designed by researchers at Northwestern University, Boston College and MIT.


Taking inspiration from the human brain, researchers from MIT have developed a new synaptic transistor capable of higher-level thinking.

Dec 20, 2023

New strategy reveals ‘full chemical complexity’ of quantum decoherence

Posted by in categories: chemistry, computing, particle physics, quantum physics

In quantum mechanics, particles can exist in multiple states at the same time, defying the logic of everyday experiences. This property, known as quantum superposition, is the basis for emerging quantum technologies that promise to transform computing, communication, and sensing. But quantum superpositions face a significant challenge: quantum decoherence. During this process, the delicate superposition of quantum states breaks down when interacting with its surrounding environment.

To unlock the power of chemistry to build complex molecular architectures for practical quantum applications, scientists need to understand and control so that they can design with specific quantum coherence properties. Doing so requires knowing how to rationally modify a molecule’s chemical structure to modulate or mitigate quantum decoherence.

To that end, scientists need to know the “spectral density,” the quantity that summarizes how fast the environment moves and how strongly it interacts with the quantum system.

Dec 20, 2023

A new strategy for making and manipulating higher-temperature superconductors

Posted by in categories: computing, engineering, quantum physics

Superconductors have intrigued physicists for decades. But these materials, which allow the perfect, lossless flow of electrons, usually only exhibit this quantum-mechanical peculiarity at temperatures so low—a few degrees above absolute zero—as to render them impractical.

A research team led by Harvard Professor of Physics and Applied Physics Philip Kim has demonstrated a new strategy for making and manipulating a widely studied class of higher-temperature superconductors called cuprates, clearing a path to engineering new, unusual forms of superconductivity in previously unattainable materials.

Using a uniquely low-temperature device fabrication method, Kim and his team report in the journal Science a promising candidate for the world’s first high-temperature, superconducting diode—essentially, a switch that makes current flow in one direction—made out of thin crystals.

Dec 19, 2023

IBM’s Quantum System Two will help it unlock the ‘full power of quantum computing’

Posted by in categories: chemistry, computing, quantum physics

“Even now, quantum systems can serve as scientific tools,” Oliver Dial, IBM Quantum CTO told IE in an interview. Quantum utility might already be here, but will we soon see a company achieve quantum advantage?


But what exactly does that mean?

Continue reading “IBM’s Quantum System Two will help it unlock the ‘full power of quantum computing’” »

Dec 19, 2023

Google wants to solve tricky physics problems with quantum computers

Posted by in categories: computing, information science, quantum physics

Quantum computers could become more useful now researchers at Google have designed an algorithm that can translate complex physical problems into the language of quantum physics.

By Alex Wilkins

Dec 19, 2023

Growing Old Could Have Played a Critical Role in Our Evolution

Posted by in categories: biological, computing, life extension

Growing old may come with more aches and pains attached, but new research suggests there’s a bigger picture to look at: by reaching our dotage, we might actually be helping the evolution of our species.

Once assumed to be an inevitable consequence of living in a rough-and-tumble world, aging is now considered something of a mystery. Some species barely age at all, for example. One of the big questions is whether aging is simply a by-product of biology, or something that comes with an evolutionary advantage.

The new research is based on a computer model developed by a team from the HUN-REN Centre for Ecological Research in Hungary which suggests old age can be positively selected for in the same way as other traits.