Menu

Blog

Archive for the ‘computing’ category: Page 202

Sep 27, 2023

Unveiling Nanoscale Wonders: Carbon-Based Quantum Technology

Posted by in categories: computing, finance, nanotechnology, quantum physics

Quantum technology holds immense promise, yet it is riddled with complexity. Anticipated to usher in a slew of technological advancements in the upcoming decades, it is set to offer us more compact and accurate sensors, robustly secure communication networks, and high-capacity computers. These advancements will outpace the capabilities of present computing technologies, aiding in the swift development of new drugs and materials, controlling financial markets, and enhancing weather forecasting.

To realize these benefits, we require what are termed as quantum materials, which display significant quantum physical effects. One such material is graphene.

Graphene is an allotrope of carbon in the form of a single layer of atoms in a two-dimensional hexagonal lattice in which one atom forms each vertex. It is the basic structural element of other allotropes of carbon, including graphite, charcoal, carbon nanotubes, and fullerenes. In proportion to its thickness, it is about 100 times stronger than the strongest steel.

Sep 27, 2023

Imaging the elusive skyrmion: Neutron tomography reveals their shapes and dynamics in bulk materials

Posted by in categories: climatology, computing, information science

Scientists at the National Institute of Standards and Technology (NIST) with colleagues elsewhere have employed neutron imaging and a reconstruction algorithm to reveal for the first time the 3D shapes and dynamics of very small tornado-like atomic magnetic arrangements in bulk materials.

These collective atomic arrangements, called skyrmions—if fully characterized and understood—could be used to process and store information in a densely packed form that uses several orders of magnitude less energy than is typical now.

The conventional, semiconductor-based method of processing information in binary form (on or off, 0 or 1) employs electrical charge states that must be constantly refreshed by current which encounters resistance as it passes through transistors and connectors. That’s the main reason that computers get hot.

Sep 27, 2023

New Method Detects Deep Fakes With 99% Accuracy

Posted by in category: computing

A team of computer scientists at UC Riverside has developed a new method to detect manipulated facial expressions in deep fake videos. The method could detect these expressions with up to 99% accuracy, making it more accurate than the current state-of-the-art methods.

The new research paper titled “Detection and Localization of Facial Expression Manipulations” was presented at the 2022 Winter Conference on Applications of Computer Vision.

Detecting Any Facial Manipulation

Sep 27, 2023

Researchers fabricate chip-based optical resonators with record low UV losses

Posted by in categories: chemistry, computing, particle physics, quantum physics

Researchers have created chip-based photonic resonators that operate in the ultraviolet (UV) and visible regions of the spectrum and exhibit a record low UV light loss. The new resonators lay the groundwork for increasing the size, complexity and fidelity of UV photonic integrated circuit (PIC) design, which could enable new miniature chip-based devices for applications such as spectroscopic sensing, underwater communication and quantum information processing.

“Compared to the better-established fields like telecom photonics and visible photonics, UV photonics is less explored even though UV wavelengths are needed to access certain atomic transitions in atom/ion-based quantum computing and to excite certain fluorescent molecules for biochemical sensing,” said research team member Chengxing He from Yale University. “Our work sets a good basis toward building photonic circuits that operate at UV wavelengths.”

In Optics Express, the researchers describe the alumina-based optical microresonators and how they achieved an unprecedented low loss at UV wavelengths by combining the right material with optimized design and fabrication.

Sep 26, 2023

Brain implants may get a broadband boost with new approach

Posted by in categories: computing, neuroscience, wearables

Researchers have proposed employing wireless neural implants to execute communication between the human brain and computers.

Purdue University researchers have unveiled a new method that may enable a compact brain-implanted sensor to sense and transmit data to a wearable device shaped like headphones.

Sep 26, 2023

Nvidia’s Blackwell B100 GPU to Hit the Market with 3nm Tech in 2024: Report

Posted by in category: computing

Nvidia’s Blackwell GB100 compute GPU to adopt TSMC’s N3-class node, to be unveiled next year, says report.

Sep 26, 2023

China plans giant particle accelerator-powered chip factory

Posted by in categories: computing, particle physics

Chinese researchers are working on ways to develop their own semiconductor lithography process to compete with ASML.

Researchers at Tsinghua University are working to bring microchip production to China to bypass US sanctions, reports the South China Morning Post.

Continue reading “China plans giant particle accelerator-powered chip factory” »

Sep 26, 2023

Microsoft Wants to Power Its Data Centers Using Nuclear Reactors

Posted by in categories: computing, nuclear energy

Microsoft 365 running on microreactors, what could possibly go wrong?

Sep 25, 2023

This Engineer Is Helping to Make India a Global Semiconductor Hub

Posted by in categories: computing, internet

At the meeting with Modi, Sharma presented the prime minister with a cutting-edge 5G millimeter-wave and sub-6-gigahertz chipset designed by Renesas’s R&D teams in Bengaluru and San Diego.

“The prime minister displayed a genuine fascination with the chipset and talked about the technical intricacies of the integrated chip,” the IEEE member says. “He asked about the silicon node and the fabrication facility that created it.

I firmly believe the development of these critical chips is vital for the greater public good, Sharma says. Those working in industry can be change agents and have a meaningful impact on society, such as advancing technology for humanity. After all, that is the motto of IEEE.

Sep 25, 2023

Canceling Noise: MIT’s Innovative Way To Boost Quantum Devices

Posted by in categories: computing, education, engineering, quantum physics

For years, researchers have tried various ways to coax quantum bits — or qubits, the basic building blocks of quantum computers — to remain in their quantum state for ever-longer times, a key step in creating devices like quantum sensors, gyroscopes, and memories.

A team of physicists from MIT

MIT is an acronym for the Massachusetts Institute of Technology. It is a prestigious private research university in Cambridge, Massachusetts that was founded in 1861. It is organized into five Schools: architecture and planning; engineering; humanities, arts, and social sciences; management; and science. MIT’s impact includes many scientific breakthroughs and technological advances. Their stated goal is to make a better world through education, research, and innovation.