Toggle light / dark theme

Researchers at the University of Chicago’s Pritzker School of Molecular Engineering, led by Giulia Galli, have conducted a computational study predicting the conditions necessary to create specific spin defects in silicon carbide. These findings, detailed in a paper published in Nature Communications

<em> Nature Communications </em> is a peer-reviewed, open-access, multidisciplinary, scientific journal published by Nature Portfolio. It covers the natural sciences, including physics, biology, chemistry, medicine, and earth sciences. It began publishing in 2010 and has editorial offices in London, Berlin, New York City, and Shanghai.

The new material is highly scalable especially compared to other alternatives such as graphene and diamonds.

Researchers at Delft University of Technology have created a novel material that has a yield strength ten times higher than Kevlar, rivaling the strength of other super strong alternatives such as graphene and diamonds.

High-strength synthetic fibers like Kevlar are renowned for their remarkable resilience to abrasion and wear. They are most notably used in applications that are reinforcing and strengthening, particularly in body armor, helmets, and other protective gear.

The M3 chips come in three versions: the M3, the M3 Pro, and the M3 Max.

Since moving away from Intel to develop its in-house PC chips laid on the foundation of its mobile A-series chips, Apple’s M series desktop chips have changed the dynamics of the PC industry. The M1 not only proved to be successful but also powerful and efficient at the same time, earning early adopter’s trust for reliability to move to a new ARM-based desktop architecture. With Apple’s Rosetta at play, early adopters could bet on moving away from Intel chips to try their beloved apps and software suits within the new ARM system.


M3 chips: Apple’s billion-dollar gamble

After successfully debuting the M2 series of chips, Apple has just launched a new series of chips for computers, called the M3, that are more powerful and efficient than ever before in its Scary Fast event. These chips are made using cutting-edge technology that makes them very small and packed with billions of transistors. According to an analyst, Apple spent a whopping $1 billion to design and test these chips, which shows how ambitious and costly this project was.

Batteries are regarded as crucial technologies in the battle against climate change, particularly for electric vehicles and storing energy from renewable sources. Anthro Energy’s novel flexible batteries are presently available to wearable manufacturers and could be employed in a variety of areas, including electric cars and laptops.

The innovative batteries score well in fire safety, thanks to new materials and design features that eliminate internal and external mechanical safety risks like explosions. Many of today’s batteries, such as lithium-ion batteries, contain a flammable liquid as an electrolyte.

Anthro Energy’s David Mackaniac and his team have created a flexible polymer electrolyte that is malleable like rubber. The new technology provides increased design flexibility for use across a range of devices, with adaptable shapes and sizes to suit specific applications.

Researchers in Germany and the U.S. have produced the first theoretical demonstration that the magnetic state of an atomically thin material, α-RuCl3, can be controlled solely by placing it into an optical cavity. Crucially, the cavity vacuum fluctuations alone are sufficient to change the material’s magnetic order from a zigzag antiferromagnet into a ferromagnet. The team’s work has been published in npj Computational Materials.

A recent theme in material physics research has been the use of intense laser light to modify the properties of magnetic materials. By carefully engineering the laser light’s properties, researchers have been able to drastically modify the and optical properties of different materials.

However, this requires continuous stimulation by high-intensity lasers and is associated with some practical problems, mainly that it is difficult to stop the material from heating up. Researchers are therefore looking for ways to gain similar control over materials using light, but without employing intense lasers.

Technology to control and harness light has existed for centuries, often as static solutions that must be custom-designed. It is only in the past couple of decades that the digital era of micro-electronics and computing has seen fast rewritable technology meant for displays find its way into the mainstream of optics.

In a new review published in Opto-Electronic Science, the authors showcase the recent advances in replacing the traditional static optical toolkit with a modern digital toolkit for “ on demand.” The result has been the introduction of digitally controlled light to nearly all major optical laboratories worldwide, opening new paths for the creation, control, detection, and harnessing of exotic forms of structured light. The advanced toolkit promises novel applications from classical to quantum, ushering in a new chapter in on-demand structured light.

The authors of this article reviewed recent progress in using a modern digital toolkit for on-demand forms of sculptured light, offering new insights and perspectives on this nascent topic. The core technology that has advanced this field is the liquid crystal spatial light modulator (SLM), allowing high resolution tailoring of light in amplitude, phase, polarization, or even more exotic degrees of freedom such as path, , and even spatiotemporal control. These simple yet highly effective devices are made up of millions of pixels that can be modulated in phase, for spatial control of light in an in-principle lossless manner.

To build highly performing quantum computers, researchers should be able to reliably derive information about the noise inside them, while also identifying effective strategies to suppress this noise. In recent years, significant progress has been made in this direction, enabling operation errors below 1% in various quantum computing platforms.

A research team at Tokyo Institute of Technology and RIKEN recently set out to reliably quantify the between the produced by pairs of semiconductor-based qubits, which are very appealing for the development of scalable quantum processors. Their paper, published in Nature Physics, unveiled strong interqubit noise correlations between a pair of neighboring silicon spin qubits.

“A useful quantum computer would practically require millions of densely packed, well-controlled qubits with errors not only small but also sufficiently uncorrelated,” Jun Yoneda, one of the researchers who carried out the study, told Phys.org. “We set out to address the potentially serious issue of correlation in silicon qubits, as they have become a compelling platform for large quantum computations otherwise.”