Toggle light / dark theme

100 Years Ago, IBM Was Born

Happy birthday, IBM! You’re 100 years old! Or are you?

It’s true that the businesses that formed IBM began in the late 1800s. But it’s also true that a birth occurred in February 1924, with the renaming of the Computing-Tabulating-Recording Co. as the International Business Machines Corp. And a hundred years after that event, it serves as an important reminder that the world of computing and IT that IBM played a pivotal role in building has a longer history than we are likely to think. “Data processing” was coined over a century ago, while “office appliance” was in use in the 1880s. From the 19th century, through the 20th, and into the 21st, IBM was there, making HP, Microsoft, and Apple appear more like children or grandchildren of the IT world; Facebook, Google, and Twitter/X more like great-grandchildren. So let’s take a moment to contemplate the origins of an iconic corporation.

Scientists make Breakthrough in Quantum Materials Research

The advance will allow researchers to transform everyday materials into conductors for use in quantum computers. Researchers at the University of California, Irvine and Los Alamos National Laboratory, publishing in the latest issue of Nature Communications, describe the discovery of a new method that transforms everyday materials like glass into materials scientists can use to make quantum computers.

“The materials we made are substances that exhibit unique electrical or quantum properties because of their specific atomic shapes or structures,” said Luis A. Jauregui, professor of physics & astronomy at UCI and lead author of the new paper.

“Imagine if we could transform glass, typically considered an insulating material, and convert it into efficient conductors akin to copper. That’s what we’ve done.”

A neural fingerprint of adaptive mentalization

Mentalization – inferring other’s emotions and intentions – is crucial for human social interactions and is impaired in various brain disorders. While previous neuroscience research has focussed on static mentalization strategies, we know little about how the brain decides adaptively which strategies to employ at any moment of time. Here we investigate this core aspect of mentalization with computational modeling and fMRI during interactive strategic games. We find that most participants can adapt their strategy to the changing sophistication of their opponents, but with considerable individual differences. Model-based fMRI analyses identify a distributed brain network where activity tracks this mentalization-belief adaptation.

Researchers solve a foundational problem in transmitting quantum information

Future quantum electronics will differ substantially from conventional electronics. Whereas memory in the latter is stored as binary digits, the former is stored as qubits, which can take many forms, such as entrapped electrons in nanostructures known as quantum dots. However, challenges in transmitting this information to anything further than the adjacent quantum dot have limited qubit design.

Now, in a study recently published in Physical Review Letters, researchers from the Institute of Industrial Science at the University of Tokyo are solving this problem, They developed a new technology for transmitting quantum information over perhaps tens to a hundred micrometers. This advance could improve the functionality of upcoming .

How can researchers transmit quantum information, from one quantum dot to another, on the same quantum computer chip? One way might be to convert electron (matter) information into light (electromagnetic wave) information—by generating light–matter hybrid states.

A multi-ensemble atomic clock enhanced using quantum computing tools

Atomic clocks are a class of clocks that leverage resonance frequencies of atoms to keep time with high precision. While these clocks have become increasingly advanced and accurate over the years, existing versions might not best utilize the resources they rely on to keep time.

Researchers at the California Institute of Technology recently explored the possibility of using quantum computing techniques to further improve the performance of . Their paper, published in Nature Physics, introduces a new scheme that enables the simultaneous use of multiple atomic clocks to keep time with even greater precision.

“Atomic clocks are decades old, but their performance improves every year,” Adam Shaw, co-author of the paper, told Phys.org.

Researchers demonstrate multi-photon state transfer between remote superconducting nodes

Devices that exhibit electrical resonance, have a nominally infinite number of quantum levels.


Over the past few decades, quantum physicists and engineers have been trying to develop new, reliable quantum communication systems. These systems could ultimately serve as a testbed to evaluate and advance communication protocols.

Researchers at the University of Chicago recently introduced a new quantum communication testbed with remote superconducting nodes and demonstrated bidirectional multiphoton communication on this testbed. Their paper, published in Physical Review Letters, could open a new route towards realizing the efficient communication of complex quantum states in superconducting circuits.

“We are developing superconducting qubits for modular quantum computing and as a quantum communication testbed,” Andrew Cleland, co-author of the paper, told Phys.org. “Both rely on being able to communicate quantum states coherently between ‘nodes’ that are connected to one another with a sparse communication network, typically a single physical .”

Apple’s Vision Pro could be a mainstream but maybe after four generations

Apple is known for its “One More Thing” moments, unveiling a new product to revolutionize the industry. The Apple Vision Pro, the company’s first augmented reality headset, was supposed to be one of those products. But according to a recent report, it might take Apple a few more years and a few more versions to achieve its vision.

A revolutionary product that will become affordable eventually

The Apple Vision Pro, launched in late 2023, is a sleek and futuristic device that lets users interact with digital content overlayed in the real world. It runs on visionOS, a new operating system designed for immersive experiences. It also comes with a hefty price tag of $3,500, making it a niche product for early adopters and enthusiasts.