Menu

Blog

Archive for the ‘computing’ category: Page 255

May 14, 2023

IBM announces end-to-end solution for quantum-safe cryptography

Posted by in categories: computing, encryption, information science, quantum physics, security

During its ongoing Think 2023 conference, IBM today announced an end-to-end solution to prepare organisations to adopt quantum-safe cryptography. Called Quantum Safe technology, it is a set of tools and capabilities that integrates IBM’s deep security expertise. Quantum-safe cryptography is a technique to identify algorithms that are resistant to attacks by both classical and quantum computers.

Under Quantum Safe technology, IBM is offering three capabilities. First is the Quantum Safe Explorer to locate cryptographic assets, dependencies, and vulnerabilities and aggregate all potential risks in one central location. Next is the Quantum Safe Advisor which allows the creation of a cryptographic inventory to prioritise risks. Lastly, the Quantum Safe Remidiator lets organisations test quantum-safe remediation patterns and deploy quantum-safe solutions.

In addition, the company has also announced IBM Safe Roadmap, which will serve as the guide for industries to adopt quantum technology. IBM Quantum Safe Roadmap is the company’s first blueprint to help companies in dealing with anticipated cryptographic standards and requirements and protect systems from vulnerabilities.

May 13, 2023

Scientists Just Unveiled The World’s First Wooden Electrical Transistor

Posted by in category: computing

Wood is good for a lot of things. Building boxes, boats, and bookcases, for instance. Making tools, or campfires. Feeding termites. And beavers.

You’ll note powering functional electrical appliances isn’t among them.

Researchers at Linköping University and the KTH Royal Institute of Technology in Sweden clearly never paid much attention to lists of things wood is bad at, so they went ahead and made the world’s first wooden transistor.

May 13, 2023

Meta says new study shows the metaverse could boost the global economy

Posted by in categories: augmented reality, computing, economics, mobile phones, virtual reality

Yeah, feels a bit harder to take it seriously when the company paying for the study has so much skin in the game.

May 13, 2023

Qubits 30 meters apart used to confirm Einstein was wrong about quantum

Posted by in categories: computing, quantum physics, space

A new experiment uses superconducting qubits to demonstrate that quantum mechanics violates what’s called local realism by allowing two objects to behave as a single quantum system no matter how large the separation between them. The experiment wasn’t the first to show that local realism isn’t how the Universe works—it’s not even the first to do so with qubits.

But it’s the first to separate the qubits by enough distance to ensure that light isn’t fast enough to travel between them while measurements are made. And it did so by cooling a 30-meter-long aluminum wire to just a few milliKelvin. Because the qubits are so easy to control, the experiment provides a new precision to these sorts of measurements. And the hardware setup may be essential for future quantum computing efforts.

May 13, 2023

Jellybeans: A sweet solution for overcrowded circuitry in quantum computer chips

Posted by in categories: computing, quantum physics, space

The silicon microchips of future quantum computers will be packed with millions, if not billions of qubits—the basic units of quantum information—to solve the greatest problems facing humanity. And with millions of qubits needing millions of wires in the microchip circuitry, it was always going to get cramped in there.

But now engineers at UNSW Sydney have made an important step toward solving a long-standing problem about giving their more breathing space—and it all revolves around jellybeans.

Continue reading “Jellybeans: A sweet solution for overcrowded circuitry in quantum computer chips” »

May 13, 2023

The Roads To Zettascale And Quantum Computing Are Long And Winding

Posted by in categories: computing, quantum physics

In the United States, the first step on the road to exascale HPC systems began with a series of workshops in 2007. It wasn’t until a decade and a half later that the 1,686 petaflops “Frontier” system at Oak Ridge National Laboratory went online. This year, Argonne National Laboratory is preparing for the switch to be turned on for “Aurora,” which will be either the second or the third such exascale machine in the United States, depending on the timing of the “El Capitan” system at Lawrence Livermore National Laboratory.

There were delays and setbacks on the road to exascale for all of these machines, as well as technology changes, ongoing competition with China, and other challenges. But don’t expect the next leap to zettascale – or even quantum computing – to be any quicker, according to Rick Stevens, associate laboratory director of computing for environment and life sciences at Argonne. Both could take another 15 to 20 years or more.

Such is the nature of HPC.

May 12, 2023

The physics of espresso coffee, build a LEGO quantum computer

Posted by in categories: computing, quantum physics

Excerpts from the Red Folder.

May 12, 2023

New Linux kernel NetFilter flaw gives attackers root privileges

Posted by in categories: computing, security

A new Linux NetFilter kernel flaw has been discovered, allowing unprivileged local users to escalate their privileges to root level, allowing complete control over a system.

The CVE-2023–32233 identifier has been reserved for the vulnerability, but a severity level is yet to be determined.

The security problem stems from Netfilter nf_tables accepting invalid updates to its configuration, allowing specific scenarios where invalid batch requests lead to the corruption of the subsystem’s internal state.

May 11, 2023

Physicists create long-sought topological quantum states

Posted by in categories: computing, mathematics, particle physics, quantum physics

The exotic particles are called non-Abelian anyons, or nonabelions for short, and their Borromean rings exist only as information inside the quantum computer. But their linking properties could help to make quantum computers less error-prone, or more ‘fault-tolerant’ — a key step to making them outperform even the best conventional computers. The results, revealed in a preprint on 9 May1, were obtained on a machine at Quantinuum, a quantum-computing company in Broomfield, Colorado, that formed as the result of a merger between the quantum computing unit of Honeywell and a start-up firm based in Cambridge, UK.

“This is the credible path to fault-tolerant quantum computing,” says Tony Uttley, Quantinuum’s president and chief operating officer.

Other researchers are less optimistic about the virtual nonabelions’ potential to revolutionize quantum computing, but creating them is seen as an achievement in itself. “There is enormous mathematical beauty in this type of physical system, and it’s incredible to see them realized for the first time, after a long time,” says Steven Simon, a theoretical physicist at the University of Oxford, UK.

May 11, 2023

UK-based tech company claims quantum computing ‘breakthrough’

Posted by in categories: computing, quantum physics

Scientists at a UK-based tech company believe they are now a step closer to building a quantum computer that can solve real-world problems, after making progress towards creating a system that protects against errors.

Experts at Quantinuum said they have made a “breakthrough” towards making quantum computing fault tolerant, which would give the system the ability to continue operating without interruption, even if one or more of its components fail.

The race to build a fully functional quantum computer has mostly focused on correcting errors that affect the system, but Ilyas Khan, the company’s founder and chief product officer, said no-one has shown “an actual demonstration of a step towards qubits, the quantum equivalent of what we refer to as a ‘bit’ in existing computers, that are naturally fault tolerant”.