Menu

Blog

Archive for the ‘computing’ category: Page 279

Mar 9, 2023

‘Revolutionary’ blue crystal resurrects hope of room temperature superconductivity

Posted by in categories: computing, physics

Has the quest for room temperature superconductivity finally succeeded? Researchers at the University of Rochester (U of R), who previously were forced to retract a controversial claim of room temperature superconductivity at high pressures, are back with an even more spectacular claim. This week in they report a new material that superconducts at room temperature—and not much more than ambient pressures.

“If this is correct, it’s completely revolutionary,” says James Hamlin, a physicist at the University of Florida who was not involved with the work. A room temperature superconductor would usher in a century-long dream. Existing superconductors require expensive and bulky chilling systems to conduct electricity frictionlessly, but room temperature materials could lead to hyperefficient electricity grids and computer chips, as well as the ultrapowerful magnets needed for levitating trains and fusion power.

But given the U of R group’s recent retraction, many physicists won’t be easily convinced. “I think they will have to do some real work and be really open for people to believe it,” Hamlin says. Jorge Hirsch, a physicist at the University of California, San Diego, and a vociferous critic of the earlier work, is even more blunt. “I doubt [the new result], because I don’t trust these authors.”

Mar 9, 2023

Revolutionary Material May Solve Key Quantum Computing Issue for IBM and Google

Posted by in categories: computing, quantum physics

An international team of researchers has discovered that a novel form of heterostructure made up of layered two-dimensional (2D) materials could help overcome the major obstacles to the widespread use of quantum computing.

Performing computation using quantum-mechanical phenomena such as superposition and entanglement.

Mar 9, 2023

Perovskite nanocrystal computer components inspired by brain cells

Posted by in categories: computing, mathematics, neuroscience

Researchers at Empa, ETH Zurich and the Politecnico di Milano are developing a new type of computer component that is more powerful and easier to manufacture than its predecessors. Inspired by the human brain, it is designed to process large amounts of data fast and in an energy-efficient way.

In many respects, the is still superior to modern computers. Although most people can’t do math as fast as a , we can effortlessly process complex sensory information and learn from experiences, while a computer cannot—at least not yet. And, the brain does all this by consuming less than half as much energy as a laptop.

One of the reasons for the brain’s energy efficiency is its structure. The individual brain cells—the neurons and their connections, the synapses—can both store and process information. In computers, however, the memory is separate from the processor, and data must be transported back and forth between these two components. The speed of this transfer is limited, which can slow down the whole computer when working with large amounts of data.

Mar 9, 2023

Viable superconducting material created at low temperature and low pressure

Posted by in categories: chemistry, computing, engineering, physics

In a historic achievement, University of Rochester researchers have created a superconducting material at both a temperature and pressure low enough for practical applications.

“With this material, the dawn of ambient superconductivity and applied technologies has arrived,” according to a team led by Ranga Dias, an assistant professor of mechanical engineering and physics. In a paper in Nature, the researchers describe a nitrogen-doped lutetium hydride (NDLH) that exhibits superconductivity at 69 degrees Fahrenheit (20.5 degrees Celsius) and 10 kilobars (145,000 pounds per square inch, or psi) of pressure.

Continue reading “Viable superconducting material created at low temperature and low pressure” »

Mar 9, 2023

Record room-temperature superconductor could boost quantum computer chips

Posted by in categories: chemistry, climatology, computing, particle physics, quantum physics, sustainability

Companies could one day make superconductive quantum computer chips that function at room temperature thanks to a new material from researchers in the US. Ranga Dias from the University of Rochester and colleagues made a material superconductive at 21°C and pressures less than 1% of those used for existing high-temperature superconductors. ‘The most exciting part is the pressure,’ Dias tells Chemistry World. ‘Even I didn’t think this was possible.’

Together with Ashkan Salamat’s team at the University of Nevada, Las Vegas, the scientists say that electrical resistance in their nitrogen-doped lutetium hydride falls to zero at room temperature. Making room-temperature zero-resistance materials is a chemistry ‘holy grail’ and could fight climate change by reducing the 5% of electricity lost as heat while flowing through the grid.

However, Dias and Salamat’s team hasn’t been able to fully confirm the new material’s structure. As hydrogen atoms are so small they don’t easily diffract the x-rays used to work out the material’s composition. And this is an important reservation, considering the publisher of the team’s previous high-temperature superconductor paper retracted it.

Mar 9, 2023

Computer modelling for molecular science — with Sir Richard Catlow

Posted by in categories: bioengineering, computing, genetics, information science, nanotechnology, science, space

High-performance, realistic computer simulations are crucially important for science and engineering, even allowing scientists to predict how individual molecules will behave.

Watch the Q&A here: https://youtu.be/aRGH5lC0pLc.
Subscribe for regular science videos: http://bit.ly/RiSubscRibe.

Continue reading “Computer modelling for molecular science — with Sir Richard Catlow” »

Mar 8, 2023

Andreas Eriksen’s PotatoP Is a Lisp-Powered Laptop With a Battery Life Measured in Years

Posted by in category: computing

Driven by a microcontroller Lisp port, this laptop-from-scratch project has the eventual goal of unlimited runtime via energy harvesting.

Mar 8, 2023

New method for predicting the behavior of quantum devices provides crucial tool for real-world applications

Posted by in categories: computing, particle physics, quantum physics

Researchers have found a way to predict the behavior of many-body quantum systems coupled to their environment. The work represents a way to protect quantum information in quantum devices, which is crucial for real-world applications of quantum technology.

In a study published in Physical Review Letters, researchers at Aalto University in Finland and IAS Tsinghua University in China report a new way to predict how , such as groups of particles, behave when they are connected to the external environment. Usually, connecting a system such as a quantum computer to its environment creates decoherence and leaks, which ruin any information about what’s happening inside the system. Now, the researchers developed a technique that turns that problem into its a solution.

The research was carried out by Aalto doctoral researcher Guangze Chen under the supervision of Professor Jose Lado and in collaboration with Fei Song from IAS Tsinghua. Their approach combines techniques from two domains, quantum many-body physics and non-Hermitian quantum physics.

Mar 8, 2023

Microsoft makes it easier to integrate quantum and classical computing

Posted by in categories: computing, information science, internet, quantum physics

By default, every quantum computer is going to be a hybrid that combines quantum and classical compute. Microsoft estimates that a quantum computer that will be able to help solve some of the world’s most pressing questions will require at least a million stable qubits. It’ll take massive classical compute power — which is really only available in the cloud — to control a machine like this and handle the error correction algorithms needed to keep it stable. Indeed, Microsoft estimates that to achieve the necessary fault tolerance, a quantum computer will need to be integrated with a peta-scale compute platform that can manage between 10 to 100 terabits per second of data moving between the quantum and classical machine. At the American Physical Society March Meeting in Las Vegas, Microsoft today is showing off some of the work it has been doing on enabling this and launching what it calls the “Integrated Hybrid” feature in Azure Quantum.

“With this Integrated Hybrid feature, you can start to use — within your quantum applications — classical code right alongside quantum code,” Krysta Svore, Microsoft’s VP of Advanced Quantum Development, told me. “It’s mixing that classical and quantum code together that unlocks new types, new styles of quantum algorithms, prototypes, sub routines, if you will, where you can control what you do to qubits based on classical information. This is a first in the industry.”

Mar 8, 2023

How Star Trek inspired modern tech—smart phones, touch panels, VR

Posted by in categories: computing, cosmology, mobile phones, virtual reality

The most famous one is the cell phone itself: Captain Kirk’s communicator inspired the folks at Motorola to make the first handheld mobile device in 1973. Star Trek: The Original Series (popularly called TOS) from the 1960s also inspired video conferencing. But things started to amp up when, in 1987, Star Trek: The Next Generation (aka TNG) hit the floors, with Sir Patrick Stewart in the lead. It became one of the most syndicated shows on television—which is how I discovered it in mid-90s India on the Star network. It fundamentally impacted my life, inspiring me to become the technology writer I am today.

But more than me, this show heralded more technological concepts that are becoming increasingly real. The LCARS computer on the Galaxy-Class USS Enterprise D is basically the foundation of what Google is today. Google’s former head of search, Amit Singhal, often said that the company is “trying to build the Star Trek computer”.