Toggle light / dark theme

BIRMINGHAM, United Kingdom — Servers around the world could soon face a massive data storage crunch, thanks to the “mind-blowing amount” of information people store digitally every day.

Researchers from Aston University say the global datasphere — the total amount of data worldwide — will increase by 300 percent within the next three years. Currently, all of this data sits in banks of servers stored in huge warehouses (data centers).

Unfortunately, the answer to creating more space in “the cloud” is not just to build more server warehouses. The Aston team says data centers already use up 1.5 percent of the world’s electricity every year. That makes endlessly building new facilities just for massive servers an unsustainable practice.

Peripheral photoinhibition (PPI) direct laser writing (DLW) is a lithography technique used to fabricate intricate 3D nanostructures that are widely employed in photonics and electronics. PPI-DLW uses two beams, one to excite the substrate and cause polymerization and the other to inhibit and quench the excitation at the edges. The capacity is limited in some systems, which can be improved through multifocal arrays. However, computing these beams is both time-and memory-intensive.

Recently, a group of researchers from Zhejiang University developed a parallel peripheral-photoinhibition lithography (P3L) system that can achieve higher efficiency nanoscale fabrication. Their work is published in Advanced Photonics

“The P3L system uses two channels, which allows the execution of different printing tasks and permits the system to fabricate highly complex structures with different periodicities,” says senior author Xu Liu.

The earliest dinosaurs included carnivorous, omnivorous and herbivorous species, according to a team of University of Bristol paleobiologists.

By looking at the tooth shapes of the earliest dinosaurs and simulating their tooth function with computational modeling, experts were able to compare them to living reptiles and their diets. Their findings, published December 16 in Science Advances, show that many groups of plant-eating dinosaurs were ancestrally omnivorous and that the ancestors of our famous long-necked herbivores, such as Diplodocus, ate meat. This ability to diversify their diets early in their evolution likely explains their evolutionary and ecological success.

The earliest dinosaurs are enigmatic: they were much smaller than their later relatives and for most of the Triassic they were in the shadow of the crocodile-like reptiles. It is unknown how diverse they were in terms of diets and ecology, but scientists know something must have happened in the Triassic that allowed dinosaurs to endure the Triassic–Jurassic mass extinction and adapt in its aftermath, becoming the for the rest of the Mesozoic.

A single particle has no temperature. It has a certain energy or a certain speed—but it is not possible to translate that into a temperature. Only when dealing with random velocity distributions of many particles does a well-defined temperature emerge.

How can the laws of thermodynamics arise from the laws of ? This is a topic that has attracted growing attention in recent years. At TU Wien (Vienna), this question has now been pursued with , which showed that chaos plays a crucial role: Only where chaos prevails do the well-known rules of thermodynamics follow from quantum physics.

Will there ever be a time when the human brain and its cognitive abilities will be replaced by a computer.

Can the forms of calculations that are found in a computer be able to go beyond the capacity of the neurons that are found in our own brains.

The age of singularity is where the human brain will be replaced by computers people like elon musk & Ray Kurzweil believe because of technology the future will be a heaven like civilization.

#singularity #technology #science #sciencefacts

Imagine brain implants that let you control devices by thought alone—or let computers read your mind. It’s early days, but research into this technology is well under way.

Film supported by @mishcondereya.

00:00 — Are brain implants the future of computing?
00:58 — Headsets are changing how brains interact with the virtual world.
02:24 — What is a brain computer interface?
03:24 — What’s holding this technology back?
04:00 — How wearable BCIs can read your mind.
06:27 — How BCIs physically alter the brain.
07:17 — Invasive brain implants.
09:14 — The first human cyborg.
09:51 — What’s next?

Sign up to our science newsletter to keep up to date: https://econ.st/3Mn3IR3

Biophysist and Biochemist Dr. Maximilian Plach talks about a groundbreaking new technology for editing genes, called CRISPR-Cas9. The tool allows scientists to make precise edits to DNA strands, which could lead to treatments for genetic diseases 
 but could also be used to create so-called “designer babies.” Max reviews how CRISPR-Cas9 works — and asks the scientific community to pause and discuss the ethics of this new tool. Max has earned his PhD in biophysics and computational biology at the University of Regensburg, Germany. He is now Chief Scientific Officer of 2bind, a dynamic and growing company focused on providing biophysical research services for biotech and pharma industries. It is therefore no wonder that Max closely follows the latest breakthroughs and developments in biotech and biomedical technology. He is a long viewer and listener of TED talks; the more exotic, the better. Or who doesn’t remember the talk about the world’s worst city flags? This talk was given at a TEDx event using the TED conference format but independently organized by a local community.