Menu

Blog

Archive for the ‘computing’ category: Page 42

Jun 21, 2024

Novel Dry Deposition Revolutionizes Carbon Nanotubes

Posted by in categories: computing, nanotechnology

In today’s semiconductor manufacturing industry, the most advanced chips are produced at 7 nm and below where there is little room for error. Despite the difficulty and unrelenting pressures found in this microworld, engineers and scientists remain undeterred in their pursuit of cutting-edge processes, techniques or materials that push the boundaries of Moore’s Law. Through endless experimentation at the nanoscale level, designers and researchers seek to uncover minute improvements that have the potential to translate into millions—if not billions—of dollars in revenue for chipmakers.

The emergence of carbon nanotubes (CNTs) as a compelling alternative material to address inefficiencies in extreme ultraviolet (EUV) lithography has the potential to be one of those innovations. However, contemporary production methods create CNTs that fall short of expectations. To realize the full potential of CNTs requires a new production method that significantly improves their quality. Only then can they help the semiconductor industry deliver on the insatiable demands for advanced chips.

Before exploring the production methods behind creating CNTs, one must first understand why they are so crucial in the semiconductor industry.

Jun 21, 2024

Why Does Biological Evolution Work? A Minimal Model for Biological Evolution and Other Adaptive Processes

Posted by in categories: biological, computing, space

Stephen Wolfram explores simple models of biological organisms as computational systems. A study of progressive development, multiway graphs of all possible paths and the need for narrowing the framework space.

Jun 21, 2024

Quantum computing breakthrough solves key obstacle for revolutionary tech

Posted by in categories: computing, quantum physics

In the race to develop practical quantum computers, a team of researchers has achieved a significant milestone by demonstrating a new method for manipulating quantum information. This breakthrough, published in the journal Nature Communications, could lead to faster and more efficient quantum computing by harnessing the power of customizable “nonlinearities” in superconducting circuits.

Quantum computers promise to revolutionize computing by leveraging the principles of quantum mechanics to perform complex calculations that are impossible for classical computers. However, one of the main challenges in building quantum computers is the difficulty in manipulating and controlling quantum information, known as qubits.

The researchers, led by Axel M. Eriksson and Simone Gasparinetti from Chalmers University of Technology in Sweden, have developed a novel approach that allows for greater control over qubits by using a special type of superconducting circuit called a SNAIL (Superconducting Nonlinear Asymmetric Inductive eLement) resonator.

Jun 21, 2024

Smartphones to soon become obsolete, BCIs like Neuralink are the way forward, says Elon Musk

Posted by in categories: computing, Elon Musk, mobile phones, neuroscience

Musk’s comment comes at a time when Neuralink is making significant strides in brain chip technology. After working with a 29-year-old named Noland Arbaugh, Neuralink recently announced that it is now accepting applications for a second participant in its trials.

Jun 20, 2024

A New Way to Transport Spin Currents

Posted by in categories: computing, particle physics

Spintronics relies on the transport of spin currents for computing and communication applications. New device designs would be possible if this spin transport could be carried out by both electrons and magnetic waves called magnons. But spin transport via magnons typically requires electrically insulating magnets—materials that cannot be easily integrated with silicon electronics. A way to bypass that requirement has now been found by Matthias Althammer at the Bavarian Academy of Sciences and Humanities in Germany and his colleagues [1]. The researchers say that this finding could have important implications for both spintronic applications and fundamental research on spin transport.

To demonstrate their concept, Althammer and his colleagues placed two magnetic, metallic strips—each hosting coupled electrons and magnons—on a nonmagnetic, insulating substrate. In the first strip, the researchers converted electron charge currents to electron spin currents. These spin currents were transferred first to the magnons in the same strip, then across the substrate to the magnons in the second strip, and finally to the electrons in the second strip. The researchers detected this spin transport by converting the electron spin currents in the second strip to charge currents.

Althammer and his colleagues studied how the spin transport between the two strips depended on temperature and strip separation. These measurements suggested that the transport was achieved via a magnetic dipole–dipole interaction between the strips. But the researchers could not rule out the possibility that it partly or mainly occurred via crystal vibrations in the substrate. Solving this open problem, which the researchers plan to do in upcoming work, will help in optimizing devices based on this principle.

Jun 20, 2024

New photonic chip spawns nested topological frequency comb

Posted by in category: computing

Scientists on the hunt for compact and robust sources of multicolored laser light have generated the first topological frequency comb. Their result, which relies on a small silicon nitride chip patterned with hundreds of microscopic rings, appears in the journal Science.

Jun 20, 2024

Biggest Self-Own in Quantum Computing, Ever

Posted by in categories: computing, open access, quantum physics

Learn more about quantum computing on Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

Quantum computing, so the fairy tale goes, is the next big thing in technology. News has popped up time and time again noting major advancements in the field, but the latest statement from company D-Wave had people scratching their heads. Are quantum computers really the next big thing? Who’s at the forefront of the field now? Let’s have a look.

Continue reading “Biggest Self-Own in Quantum Computing, Ever” »

Jun 20, 2024

Microsoft releases Florence 2 Vision models that can outperform larger specialist models

Posted by in category: computing

Microsoft has released a set of vision models called Florence 2 is a prompt-based vision model designed for computer vision and image processing tasks such as image description, object recognition, localization, and segmentation.

Jun 19, 2024

Electric fields catalyse graphene’s energy and computing prospects

Posted by in categories: chemistry, computing, sustainability

Researchers at the National Graphene Institute have made a groundbreaking discovery that could revolutionise energy harnessing and information computing. Their study, published in Nature (“Control of proton transport and hydrogenation in double-gated graphene”), reveals how electric field effects can selectively accelerate coupled electrochemical processes in graphene.

Electrochemical processes are essential in renewable energy technologies like batteries, fuel cells, and electrolysers. However, their efficiency is often hindered by slow reactions and unwanted side effects. Traditional approaches have focused on new materials, yet significant challenges remain.

The Manchester team, led by Dr Marcelo Lozada-Hidalgo, has taken a novel approach. They have successfully decoupled the inseparable link between charge and electric field within graphene electrodes, enabling unprecedented control over electrochemical processes in this material. The breakthrough challenges previous assumptions and opens new avenues for energy technologies.

Jun 19, 2024

Vortex Power: The Swirl of Light Revolutionizing Quantum Computing

Posted by in categories: climatology, computing, quantum physics, space

Researchers at the Weizmann Institute of Science discovered a new type of vortex formed by photon interactions, which could advance quantum computing.

Vortex Phenomena

Continue reading “Vortex Power: The Swirl of Light Revolutionizing Quantum Computing” »

Page 42 of 840First3940414243444546Last