Menu

Blog

Archive for the ‘computing’ category: Page 5

Dec 19, 2024

Astronaut-on-a-chip: Multi-organ tissue chips simulate space radiation’s impact on human health

Posted by in categories: biotech/medical, computing, health

As astronauts venture further into space, their exposure to harmful radiation rises. Researchers from Columbia University are simulating the effects of space radiation here on Earth to determine its impact on human physiology using multi-organ tissue chips. Their work documents the differential effects seen in tissues after acute and prolonged radiation exposure and identifies multiple genes of interest that could help inform the development of future radioprotective agents.

Their study appears in Advanced Science.

“As deep space exploration continues to unfold, it is vital to understand the physiological damage caused by space radiation to better mitigate its effects. By exposing multi-organ models to simulated cosmic radiation, this study has laid the groundwork to aid in this effort,” commented Jermont Chen, Ph.D., a program director in the Division of Discovery Science and Technology at NIBIB.

Dec 19, 2024

New method maps hundreds of proteins in cell nuclei simultaneously

Posted by in categories: biotech/medical, computing, genetics

Caltech researchers have developed a new method to map the positions of hundreds of DNA-associated proteins within cell nuclei all at the same time. The method, called ChIP–DIP (Chromatin ImmunoPrecipitation Done In Parallel), is a versatile tool for understanding the inner workings of the nucleus during different contexts, such as disease or development.

The research was conducted in the laboratory of Mitchell Guttman, professor of biology, and is described in a paper that appears in the journal Nature Genetics.

Nearly all cells in the human body contain the same DNA, which encodes the blueprint for creating every cell type in the body and directing their activities. Despite having the same , different cell types express unique sets of proteins, allowing for the various cells to perform their specialized functions and to adapt to conditions within their environments. This is possible because of careful regulation within the nucleus of each cell and involves thousands of regulatory proteins that localize to precise places in the nucleus.

Dec 19, 2024

Nonlinear ‘skin effect’ unveiled in antiferromagnetic materials

Posted by in categories: computing, materials

A team of researchers has identified a unique phenomenon, a “skin effect,” in the nonlinear optical responses of antiferromagnetic materials. The research, published in Physical Review Letters, provides new insights into the properties of these materials and their potential applications in advanced technologies.

Nonlinear optical effects occur when light interacts with materials that lack inversion symmetry. It was previously thought that these effects were uniformly distributed throughout the material. However, the research team discovered that in antiferromagnets, the can be concentrated on the surfaces, similar to the “skin effect” seen in conductors, where currents flow primarily on the surface.

In this study, the team developed a self-designed to investigate the nonlinear optical responses in antiferromagnets, using the bulk photovoltaic effect as a representative example. Their results showed that, while the global inversion symmetry was broken, the local deep inside the antiferromagnet was almost untouched.

Dec 19, 2024

Physicists magnetize a material with light: Terahertz technique could improve memory chip design

Posted by in categories: computing, particle physics

MIT physicists have created a new and long-lasting magnetic state in a material, using only light.

In a study that appears in Nature, the researchers report using a —a light source that oscillates more than a trillion times per second—to directly stimulate atoms in an antiferromagnetic material. The laser’s oscillations are tuned to the natural vibrations among the material’s atoms, in a way that shifts the balance of atomic spins toward a new magnetic state.

The results provide a new way to control and switch , which are of interest for their potential to advance information processing and memory chip technology.

Dec 18, 2024

Layer by layer: How simulations help manufacturing of modern displays

Posted by in categories: computing, sustainability

Modern materials must be recyclable and sustainable. Consumer electronics is no exception, with organic light-emitting diodes (OLEDs) taking over modern televisions and portable device displays. However, the development of suitable materials—from the synthesis of molecules to the production of display components—is very time-consuming.

Scientists led by Denis Andrienko of the Max Planck Institute for Polymer Research and Falk May from Display Solutions at Merck have now developed a simulation method that could significantly speed up the development of new materials.

High contrast and are key features of innovative . OLEDs use thin films of organic molecules, i.e. carbon-containing molecules, to achieve these goals.

Dec 18, 2024

ORNL researchers translate foundational uranium science into active nonproliferation solutions

Posted by in categories: biotech/medical, computing, military, nuclear energy, science, terrorism

Through its commitment to international nuclear nonproliferation — a mission focused on limiting the spread of nuclear weapons and sensitive technology while working to promote peaceful use of nuclear science and technology — the United States maintains a constant vigilance aimed at reducing the threat of nuclear and radiological terrorism worldwide.

With extensive research into both basic and applied uranium science, as well as internationally deployed operational solutions, the Department of Energy’s Oak Ridge National Laboratory is uniquely positioned to contribute its comprehensive capabilities toward advancing the U.S. nonproliferation mission.

In 1943, seemingly overnight, ORNL emerged from a rural Tennessee valley as the site of the world’s first continuously operating nuclear reactor, in support of U.S. efforts to end World War II. ORNL’s mission soon shifted into peacetime applications, harnessing nuclear science for medical treatments, power generation and breakthroughs in materials, biological and computational sciences.

Dec 18, 2024

Israel now operating its first domestically built quantum computer

Posted by in categories: computing, quantum physics

First Israeli superconductor-based quantum computer supporting defense and civilian applications is now operational.

Dec 18, 2024

Retrocausal Quantum Teleportation Protocol

Posted by in categories: computing, cosmology, information science, quantum physics, time travel

While classical physics presents a deterministic universe where cause must precede effect, quantum mechanics and relativity theory paint a more nuanced picture. There are already well-known examples from relativity theory like wormholes, which are valid solutions of Einstein’s Field Equations, and similarly in quantum mechanics the non-classical state of quantum entanglement—the “spooky action at a distance” that troubled Einstein—which demonstrates that quantum systems can maintain instantaneous correlations across space and, potentially, time.

Perhaps most intriguingly, the protocol suggests that quantum entanglement can be used to effectively send information about optimal measurement settings “back in time”—information that would normally only be available after an experiment is complete. This capability, while probabilistic in nature, could revolutionize quantum computing and measurement techniques. Recent advances in multipartite hybrid entanglement even suggest these effects might be achievable in real-world conditions, despite environmental noise and interference. The realization of such a retrocausal quantum computational network would, effectively, be the construction of a time machine, defined in general as a system in which some phenomenon characteristic only of chronology violation can reliably be observed.

This article explores the theoretical foundations, experimental proposals, significant improvements, and potential applications of the retrocausal teleportation protocol. From its origins in quantum mechanics and relativity theory to its implications for our understanding of causality and the nature of time itself, we examine how this cutting-edge research challenges our classical intuitions while opening new possibilities for quantum technology. As we delve into these concepts, we’ll see how the seemingly fantastic notion of time travel finds a subtle but profound expression in the quantum realm, potentially revolutionizing our approach to quantum computation and measurement while deepening our understanding of the universe’s temporal fabric.

Dec 18, 2024

The Human Brain Operates at a Stunningly Slow Pace

Posted by in categories: computing, Elon Musk, internet, neuroscience

The brain is sometimes called the most complex machine in the known universe. But the thoughts that it outputs putter along at a trifling 10 bits per second, the pace of a conversation.

By Rachel Nuwer

Continue reading “The Human Brain Operates at a Stunningly Slow Pace” »

Dec 18, 2024

Engineers Decode Heat Flow to Supercharge Computer Chips

Posted by in categories: computing, nanotechnology, sustainability

Researchers at the University of Virginia have made significant advancements in understanding how heat flows through thin metal films, critical for designing more efficient computer chips.

This study confirms Matthiessen’s rule at the nanoscale, enhancing heat management in ultra-thin copper films used in next-generation devices, thereby improving performance and sustainability.

Breakthrough in Chip Technology.

Page 5 of 880First23456789Last