Toggle light / dark theme

Computer modeling shows how macromolecules form quickly in gas & dust disks around young stars, aiding understanding of exoplanet.

Astronomers explain #Rapid #Formation of #Organic #Macromolecules in #Protoplanetary #Disks around #Young #Stars.


An international team of researchers led by the University of Bern has used observation-based computer modeling to find an explanation for how macromolecules can form in a short time in disks of gas and dust around young stars. These findings could be crucial for understanding how habitability develops around different types of exoplanets and stars.

Organic macromolecules are regarded as the building blocks of life, as they are of crucial importance for the life-friendly carbon and nitrogen composition of the earth.

A widely used security protocol that dates back to the days of dial-up internet has vulnerabilities that could expose large numbers of networked devices to an attack and allow an attacker to gain control of traffic on an organization’s network.

A research team led by University of California San Diego computer scientists investigated the Remote Authentication Dial-In User Service (RADIUS) protocol and found a vulnerability they call Blast-RADIUS that has been present for decades. RADIUS, designed in 1991, allows networked devices such as routers, switches or mobile roaming gear to use a to validate login or other credentials.

This is a common set-up in enterprise and because it allows credentials to be centrally managed. As a result, RADIUS is a critical part of modern telecommunications and enterprise networks; in large enterprises, it may control access to tens of thousands of switches.

Innovative diode laser spectroscopy provides precise monitoring of the color changes in the sweeping laser at each moment, establishing new benchmarks for frequency metrology and practical applications.

Since the laser’s debut in the 1960s, laser spectroscopy has evolved into a crucial technique for investigating the intricate structures and behaviors of atoms and molecules. Advances in laser technology have significantly expanded its potential. Laser spectroscopy primarily consists of two key types: frequency comb-based laser spectroscopy and tunable continuous-wave (CW) laser spectroscopy.

Comb-based laser spectroscopy enables extremely precise frequency measurements, with an accuracy of up to 18 digits. This remarkable precision led to a Nobel Prize in Physics in 2005 and has applications in optical clocks, gravity sensing, and the search for dark matter. Frequency combs also enable high-precision, high-speed broadband spectroscopy because they combine large bandwidth with high spectral resolution.

A new mechanical computer made from an array of rigid, interconnected plastic cubes can store, retrieve and erase data simply by stretching the array and manipulating the position of the cubes. The device’s construction is inspired by the ancient Japanese art of paper cutting, or kirigami, and its designers at North Carolina State University in the US say that more advanced versions could be used in stable, high-density memory and logic computing; in information encryption and decryption; and to create displays based on three-dimensional units called voxels.

Mechanical computers were first developed in the 19th century and do not contain any electronic components. Instead, they perform calculations with levers and gears. We don’t often hear about such contraptions these days, but researchers led by NC State mechanical and aerospace engineer Jie Yin are attempting to bring them back due to their stability and their capacity for storing complex information.

According to user reports following this month’s Patch Tuesday, the August 2024 Windows updates are breaking dual boot on Linux systems with Secure Boot enabled.

This issue is caused by Microsoft’s decision to apply a Secure Boot Advanced Targeting (SBAT) update to block Linux boot loaders unpatched against the CVE-2022–2601 GRUB2 Secure Boot bypass vulnerability, which could “have an impact on Windows security.”

“The vulnerability assigned to this CVE is in the Linux GRUB2 boot loader, a boot loader designed to support Secure Boot on systems that are running Linux,” Microsoft says in an advisory published last week to address this issue.

Superconductors, known for enabling lossless electrical conductivity and even magnetic levitation, typically function only at extremely low temperatures. Recent research has identified electron pairing, a core superconductor behavior, in materials at higher-than-expected temperatures, such as an antiferromagnetic insulator.

This discovery by SLAC and Stanford researchers could lead to new ways to develop superconductors that operate closer to room temperature, potentially revolutionizing technology in many fields including quantum computing and transportation.

Exploring the Enigma of Superconductors.

Dr. Caroline Dorn: “The larger the planet and the greater its mass, the more the water tends to go with the iron droplets and become integrated in the core.”


Do certain exoplanets mirror Earth regarding their distribution of iron and water? This is what a recent study published in Nature Astronomy hopes to address as an international team of researchers investigated the evolution of exoplanets and how they form their iron core with water residing either beneath or above the surface, and whether as a liquid or gas. This study holds the potential to help researchers better understand the formation and evolution of exoplanets, which will enable scientists to provide better targets for identifying Earth-like worlds throughout the cosmos.

For the study, the researchers use computer models to simulate the formation of planetary interiors on super-Earth and sub-Neptune exoplanets, specifically with a focus on the distribution of water within a planet’s interior in relation to the additional iron and metallic composition. In the end, the researchers found that longstanding hypotheses about the formation and evolution of water worlds are challenged given the model’s results that 95 percent or more of water on an exoplanet is stored within the planet’s interior, as opposed to the surface.

There is a theory dubbed “quantum consciousness,” which stipulates that brain functions and consciousness are derived from quantum effects like the collapse of the quantum wavefunction.

This is a strange part of quantum physics, where particles go from a state of simultaneous properties to a more “normal” state where they have one defined characteristic. It has notably been popularized by the concept of Schrödinger’s cat.

A view into how nanoscale building blocks can rearrange into different organized structures on command is now possible with an approach that combines an electron microscope, a small sample holder with microscopic channels, and computer simulations, according to a new study by researchers at the University of Michigan and Indiana University.

The approach could eventually enable smart materials and coatings that can switch between different optical, mechanical and electronic properties.

“One of my favorite examples of this phenomenon in nature is in chameleons,” said Tobias Dwyer, U-M doctoral student in chemical engineering and co-first author of the study published in Nature Chemical Engineering (“Engineering and direct imaging of nanocube self-assembly pathways”). “Chameleons change color by altering the spacing between nanocrystals in their skin. The dream is to design a dynamic and multifunctional system that can be as good as some of the examples that we see in biology.”

Entanglement is a fundamental concept in quantum information theory and is often regarded as a key indicator of a system’s “quantumness”. However, the relationship between entanglement and quantum computational power is not straightforward. In a study posted on the arXiv preprint server, physicists in Germany, Italy and the US shed light on this complex relationship by exploring the role of a property known as “magic” in entanglement theory. The study’s results have broad implications for various fields, including quantum error correction, many-body physics and quantum chaos.

Traditionally, the more entangled your quantum bits (qubits) are, the more you can do with your quantum computer. However, this belief – that higher entanglement in a quantum state is associated with greater computational advantage – is challenged by the fact that certain highly entangled states can be efficiently simulated on classical computers and do not offer the same computational power as other quantum states. These states are often generated by classically simulable circuits known as Clifford circuits.

\r \r