Toggle light / dark theme

Researchers discover a new type of quantum entanglement

A study from Technion unveils a newly discovered form of quantum entanglement in the total angular momentum of photons confined in nanoscale structures. This discovery could play a key role in the future miniaturization of quantum communication and computing components.

Quantum physics sometimes leads to very unconventional predictions. This is what happened when Albert Einstein and his colleagues, Boris Podolsky and Nathan Rosen (who later founded the Faculty of Physics at Technion), found a scenario in which knowing the state of one particle immediately affects the state of the other particle, no matter how great the distance between them. Their historic 1935 paper was nicknamed EPR after its three authors (Einstein–Podolsky–Rosen).

The idea that knowing the state of one particle will affect another particle located at a huge distance from it, without physical interaction and information transfer, seemed absurd to Einstein, who called it “spooky action at a distance.”

Understanding disrupted motivation in Parkinson’s disease through a value-based decision-making lens

Neurobehavioural disturbances such as loss of motivation have profound effects on the lives of many people living with Parkinson’s disease (PD), as well as other brain disorders. The field of decision-making neuroscience, underpinned by a plethora of work across species, provides an important framework within which to investigate apathy in clinical populations. Here we review how changes in a number of different processes underlying value-based decision making may lead to the common phenotype of apathy in PD. The application of computational models to probe both behaviour and neurophysiology show promise in elucidating these cognitive processes crucial for motivated behaviour. However, observations from the clinical management of PD demand an expanded view of this relationship, which we aim to delineate. Ultimately, effective treatment of apathy may depend on identifying the pattern in which decision making and related mechanisms have been disrupted in individuals living with PD.

Space Forge sees LEO as key to strengthening US chip independence

TAMPA, Fla. — British in-orbit manufacturing venture Space Forge has appointed technology veteran Atul Kumar to set up a semiconductor business in the United States, aiming to bolster domestic chip production as efforts to reduce reliance on foreign suppliers gather pace.

Kumar, a materials scientist with more than two decades of experience in the sector, is tasked with developing manufacturing operations under Space Forge’s U.S. subsidiary to support the terrestrial and in-space growth of semiconductor substrates, the company announced April 10.

The move comes as the U.S. ramps up efforts to reduce its dependence on chips from abroad, driven by supply chain disruptions, national security concerns and mounting trade tensions — particularly with China.

Simulating quantum magnetism with a digital quantum computer

Quantum computers, which process information leveraging quantum mechanical effects, have the potential to outperform classical computers in some optimization and computational tasks. In addition, they could be used to simulate complex quantum systems that cannot be simulated using classical computers.

Researchers at Quantinuum and other institutes in Europe and the United States recently set out to simulate the digitized dynamics of the quantum Ising model, a framework that describes in materials, using an advanced quantum computer.

Their simulations, outlined in a paper on the arXiv preprint server, led to the observation of a transient state known as Floquet prethermalization, in which systems appear locally stable before approaching full equilibrium, in regimes that are inaccessible to classical computers.

Strategic gene placement in bacteria offers insights into evolutionary success

Bioinformaticians from Heinrich Heine University Düsseldorf (HHU) and the university in Linköping (Sweden) have established that the genes in bacterial genomes are arranged in a meaningful order. In the journal Science, they explain that the genes are arranged by function: If they become increasingly important for faster growth, they are located near the origin of DNA replication. Accordingly, their position influences how their activity changes with the growth rate.

Are genes distributed randomly along the , as if scattered from a salt shaker? This opinion, which is held by a majority of researchers, has now been disputed by a team of bioinformaticians led by Professor Dr. Martin Lercher, head of the research group for Computational Cell Biology at HHU.

When bacteria replicate their in preparation for , the process starts at a specific point on the bacterial chromosome and continues along the chromosome in both directions.

When Einstein Walked with Gödel

Parul Sehgal of The New York Times stated “In these pieces, plucked from the last 20 years, Holt takes on infinity and the infinitesimal, the illusion of time, the birth of eugenics, the so-called new atheism, smartphones and distraction. It is an elegant history of recent ideas. There are a few historical correctives — he dismantles the notion that Ada Lovelace, the daughter of Lord Byron, was the first computer programmer. But he generally prefers to perch in the middle of a muddle — say, the string theory wars — and hear evidence from both sides without rushing to adjudication. The essays orbit around three chief concerns: How do we conceive of the world (metaphysics), how do we know what we know (epistemology) and how do we conduct ourselves (ethics)”. [ 6 ]

Steven Poole of The Wall Street Journal commented “…this collection of previously published essays by Jim Holt, who is one of the very best modern science writers”. [ 7 ]

[ edit ].

The Most Memorable Overclocking-Friendly CPUs

Enthusiasts have been pushing the limits of silicon for as long as microprocessors have existed. Early overclocking endeavors involved soldering and replacing crystal clock oscillators, but that practice quickly evolved into adjusting system bus speeds using motherboard DIP switches and jumpers.

Internal clock multipliers were eventually introduced, but it didn’t take long for those to be locked down, as unscrupulous sellers began removing official frequency ratings and rebranding chips with their own faster markings. System buses and dividers became the primary tuning tools for most users, while ultra-enthusiasts went further – physically altering electrical specifications through hard modding.

Eventually, unlocked multipliers made a comeback, ushering in an era defined by BIOS-level overclocking and increasingly sophisticated software tuning tools. Over the past decade, however, traditional overclocking has become more constrained. Improved factory binning, aggressive turbo boost algorithms, and thermal ceilings mean that modern CPUs often operate near their peak potential right out of the box.

/* */