Toggle light / dark theme

Excellent! Super human capabilities at work via brain-controlled robotics.


Eight people who spent years paralyzed from spinal cord injuries have regained partial control of their lower limbs as well as some sensation following work with brain-controlled robotics. Five of the participants had been paralyzed for at least five years and two had been paralyzed for more than ten.

It took seven months of training before most of the subjects saw any changes. After a year, four patients’ sensation and muscle control changed significantly enough that doctors upgraded their diagnoses from complete to partial paralysis.

According to Duke University neuroscientist Miguel Nicolelis, M.D., Ph.D., who led the study, brain-machine systems establish direct communication between the brain and computers or prosthetics, such as robotic limbs. According to the report, published by Duke Today, Nicolelis has worked for 20 years to build systems that record hundreds of simultaneous signals from neurons in the brain. His goal is to extract motor commands from those signals and translate them into movement.

Interesting recorded show on how each person has been assigned a unique node which can replicate the person digitally in a virtual world. And, how DoD and D-Wave is involved. Not sure how factual this is; but an interesting concept.


Anthony Patch, author researcher & public speacker, is back on The Kev Baker Show. This time out we discuss how CERN & quantum computers literally hold the key to unlocking a multidimensional reality.

Hold on tight folks, this hits the “deep woo” early!

Rice physicists are closing in on a method that will create a new condensed matter state in which all electrons in a material act as one by manipulating them with light and a magnetic field. This research advance technologies such as quantum computers.

For particle physicists, studying the interactions between photons and electrons has long been an area of interest. After all, observing such phenomena could eventually lead us to the creation of a viable quantum computer.

Physicist Junichiro Kono and his colleagues at Rice University are making headway on a method to create a new condensed matter state, where electrons in a material “couple” after they are manipulated with light and a magnetic field.

Read more

Hope they’re working with QC researchers in Los Alamos and DARPA; it is the US Government which is known for its silos and multi-layer bureaucracies.


Quantum computing is a novel way to build computers — one that takes advantage of the quantum properties of particles to perform operations on data in a very different way than traditional computers. In some cases, the algorithm speedups are extraordinary.

Specifically, a quantum computer using something called Shor’s algorithm can efficiently factor numbers, breaking RSA. A variant can break Diffie-Hellman and other discrete log-based cryptosystems, including those that use elliptic curves. This could potentially render all modern public-key algorithms insecure. Before you panic, note that the largest number to date that has been factored by a quantum computer is 143. So while a practical quantum computer is still science fiction, it’s not stupid science fiction.

(Note that this is completely different from quantum cryptography, which is a way of passing bits between two parties that relies on physical quantum properties for security. The only thing quantum computation and quantum cryptography have to do with each other is their first words. It is also completely different from the NSA’s QUANTUM program, which is its code name for a packet-injection system that works directly in the Internet backbone.)

A collaboration including researchers at the National Physical Laboratory (NPL) has developed a tuneable, high-efficiency, single-photon microwave source. The technology has great potential for applications in quantum computing and quantum information technology, as well as in studying the fundamental reactions between light and matter in quantum circuits.

The tuneable microwave single-photon source

Circuits which produce single photons are a vital component in quantum computers. They usually consist of a quantum bit or ‘qubit’, coupled to a resonance circuit. The resonant circuit limits the photon output to specific frequencies depending on the design of the circuit.

Read more

I have share my own risks on BMI a while back especially that which is connected (net, cloud, etc.)


brain malware 1Short Bytes: For a moment, forget computer and smartphone malware. There’s even a bigger danger in town in the form of brain malware. By exploiting brain-computer interfaces (BCI) being used in medical and gaming applications, hackers can read your private and sensitive data. Recently, a team of researchers from the University of Washington shed more light on the subject, demanding a policy-oriented regulation on BCIs.

Read more