Toggle light / dark theme

Big Data and Obama’s Brain Initiative — As we harness mass volumes of information and the current tech explosion around information; we will seeing an accelerated growing need/ urgency for more advance AI, QC, and new brain-mind interface intelligence to assist others when working with both super-intelligence AI and the mass volumes of information.


Engineers are experimenting with chip design to boost computer performance. In the above layout of a chip developed at Columbia, analog and digital circuits are combined in a novel architecture to solve differential equations with extreme speed and energy efficiency. Image: Simha Sethumadhavan, Mingoo Seok and Yannis Tsividis/Columbia Engineering.

In the big data era, the modern computer is showing signs of age. The sheer number of observations now streaming from land, sea, air and space has outpaced the ability of most computers to process it. As the United States races to develop an “exascale” machine up to the task, a group of engineers and scientists at Columbia have teamed up to pursue solutions of their own.

The Data Science Institute’s newest working group— Frontiers in Computing Systems —will try to address some of the bottlenecks facing scientists working with massive data sets at Columbia and beyond. From astronomy and neuroscience, to civil engineering and genomics, major obstacles stand in the way of processing, analyzing and storing all this data.

Nice article; I do need to mention that more and more screen displays are moving to Q-Dot technology. So, computer graphics is being enriched in multiple ways by Quantum.


Caltech applied scientists have developed a new way to simulate large-scale motion numerically using the mathematics that govern the universe at the quantum level.

The , presented at the International Conference and Exhibition on Computer Graphics & Interactive Techniques (SIGGRAPH), held in Anaheim, California, from July 24–28, allows computers to more accurately simulate vorticity, the spinning motion of a flowing fluid.

A smoke ring, which seems to turn itself inside out endlessly as it floats along, is a complex demonstration of vorticity, and is incredibly difficult to simulate accurately, says Peter Schröder, Shaler Arthur Hanisch Professor of Computer Science and Applied and Computational Mathematics in the Division of Engineering and Applied Science.

Many folks are not aware that one of the early detections of GBM is through a person’s weakened eyesight as well as Ophthalmologist examinations.


The retina is essentially part of the brain. Studying them led researchers one step closer to understanding how the brain processes stimuli.

There is a genetically transmitted disease that causes the eyeballs to twitch back and forth, and it’s called Nystagmus. It impacts 1 in 1,500 men. Notably, it has been recently discovered that the twitching is caused by the miscalculations done by the retinal neurons in converting visual stimuli into electrical signals.

Now, rabbits are helping us figure out how this disease operates (and could be fixed).

Read more

We spend our lives surrounded by high-tech materials and chemicals that make our batteries, solar cells and mobile phones work. But developing new technologies requires time-consuming, expensive and even dangerous experiments.

Luckily we now have a secret weapon that allows us to save time, money and risk by avoiding some of these experiments: computers.

Thanks to Moore’s law and a number of developments in physics, chemistry, computer science and mathematics over the past 50 years (leading to Nobel Prizes in chemistry in 1998 and 2013) we can now carry out many experiments entirely on computers using modeling.

Read more

On the path towards Singularity — I believe that this is an individual choice. However, to remain relevant and competitive in industry we may see a day when folks will require this type of enhancement to compete, perform in military operations, etc.


The researchers carried out a survey of more than 4,700 US adults.

The survey asked the public on views of gene editing, implantation of brain chips, and transfusions of synthetic blood.

Abstract: We prove a lower bound on the information leakage of any classical protocol.

Computing the equality function in the simultaneous message passing (SMP) model. Our bound is valid in the finite length regime and is strong enough to demonstrate a quantum advantage in terms of information leakage for practical quantum protocols. We prove our bound by obtaining an improved finite size version of the communication bound due to Babai and Kimmel, relating randomized.

Communication to deterministic communication in the SMP model. We then relate. information leakage to randomized communication through a series of reductions.

We first provide alternative characterizations for information leakage, allowing us to link it to average length communication while allowing for. shared randomness (pairwise, with the referee). A Markov inequality links this.

With bounded length communication, and a Newman type argument allows us to go from shared to private randomness. The only reduction in which we incur more.

Read more

The public was unenthusiastic on all counts, even about protecting babies from disease.


Americans aren’t very enthusiastic about using science to enhance the human species. Instead, many find it rather creepy.

A new survey by the Pew Research Center shows a profound distrust of scientists, a suspicion about claims of progress and a real discomfort with the idea of meddling with human abilities. The survey also opens a window into the public’s views on what it means to be a human being and what values are important.

Pew asked about three techniques that might emerge in the future but that are not even close to ready now: using gene editing to protect babies from disease, implanting chips in the brain to improve people’s ability to think, and transfusing synthetic blood that would enhance performance by increasing speed, strength and endurance.

Age of Quantum Bit.


In computers of the future, information might be stored in the form of quantum bits. But how can a quantum bit be realized?

A research team from Germany, France and Switzerland has realized quantum bits, short qubits, in a new form. One day, they might become the information units of quantum computers.

To date, researchers have realized qubits in the form of individual electrons. However, this led to interferences and rendered the information carriers difficult to programme and read. The group has solved this problem by utilising electron holes as qubits, rather than electrons.