Archive for the ‘computing’ category: Page 810
Dec 3, 2015
The Universe is a Quantum Algorithm, and the proof has been found in the … Stock Market
Posted by Andreas Matt in categories: computing, cosmology, information science, quantum physics
Which mean for us?
Recently, quantum gates and quantum circuits have been found when portfolios of stocks were simulated in quantum computation processes, pointing out to the existence of a bizarre quantum code beneath the stock market transactions. The quantum code of the stock market might prove to have a more profound signification if is related to the recent finding of quantum codes at the deepest levels of our reality, such as quantum mechanics of black holes and the space-time of the universe. Could this mysterious stock market quantum code be a tiny fragment of a quantum code that our universe uses to create the physical reality?
John Preskill’s talk „Is spacetime a quantum error-correcting code?” held at the Center for Quantum Information and Control, University of New Mexico, and previously at Kavli Institute for Theoretical physics, may represent a turning point in physical research related to questioning the existence and evolution of our Universe. The essence of this talk may change forever our understanding of the Universe, shifting the perspective of physical research from masses and energies to codes of information theory.
Dec 3, 2015
A Short History of AI, and Why It’s Heading in the Wrong Direction
Posted by Jeremy Lichtman in categories: computing, information science, military, robotics/AI
Sir Winston Churchill often spoke of World War 2 as the “Wizard War”. Both the Allies and Axis powers were in a race to gain the electronic advantage over each other on the battlefield. Many technologies were born during this time – one of them being the ability to decipher coded messages. The devices that were able to achieve this feat were the precursors to the modern computer. In 1946, the US Military developed the ENIAC, or Electronic Numerical Integrator And Computer. Using over 17,000 vacuum tubes, the ENIAC was a few orders of magnitude faster than all previous electro-mechanical computers. The part that excited many scientists, however, was that it was programmable. It was the notion of a programmable computer that would give rise to the idea of artificial intelligence (AI).
As time marched forward, computers became smaller and faster. The invention of the transistor semiconductor gave rise to the microprocessor, which accelerated the development of computer programming. AI began to pick up steam, and pundits began to make grand claims of how computer intelligence would soon surpass our own. Programs like ELIZA and Blocks World fascinated the public and certainly gave the perception that when computers became faster, as they surely would in the future, they would be able to think like humans do.
But it soon became clear that this would not be the case. While these and many other AI programs were good at what they did, neither they, or their algorithms were adaptable. They were ‘smart’ at their particular task, and could even be considered intelligent judging from their behavior, but they had no understanding of the task, and didn’t hold a candle to the intellectual capabilities of even a typical lab rat, let alone a human.
Dec 3, 2015
HGST’s helium-filled Ultrastar He10 is the first 10TB hard drive for common storage
Posted by Shailesh Prasad in category: computing
Dec 2, 2015
Coming to a monitor near you: a defect-free, molecule-thick film
Posted by Shailesh Prasad in categories: computing, materials, nanotechnology, solar power, sustainability
An emerging class of atomically thin materials known as monolayer semiconductors has generated a great deal of buzz in the world of materials science. Monolayers hold promise in the development of transparent LED displays, ultra-high efficiency solar cells, photo detectors and nanoscale transistors. Their downside? The films are notoriously riddled with defects, killing their performance.
Dec 1, 2015
Light-Bending Microchip Could Fire Up Quantum Computers
Posted by Shailesh Prasad in categories: computing, quantum physics, time travel
For the first time, scientists have achieved infinite speeds on a microchip. Although this advance will not enable faster-than-light starships, the light-warping technology behind this innovation could lead to new light-based microchips and help enable powerful quantum computers, researchers said.
Light travels at the speed of about 670 million miles per hour (1.08 billion km/h) in a vacuum, and is theoretically the fastest possible speed at which matter or energy can travel. Exceeding this speed limit should lead to impossible results such as time travel, according to Einstein’s theory of relativity.
However, in a way, researchers have overcome this barrier for decades. [Warped Physics: 10 Effects of Faster-Than-Light Travel].
Dec 1, 2015
Researchers demonstrate world’s first 5G, 100 to 200 meter communication link up to 2 Gbps
Posted by Shailesh Prasad in categories: computing, internet
Keysight Technologies, Inc., in collaboration with electrical engineers at the University of California, San Diego, has demonstrated the world’s first 64 (8 × 8) and 256-element (16 × 16), 60-GHz silicon wafer-scale phased-array transmitter with integrated high-efficiency antennas for Gbps communications at 100 to 200 meters. With this demonstration, Keysight and UC San Diego have proven that a 5G communication link is not only possible, but can deliver record performance.
Keysight’s collaboration with UC San Diego builds on an earlier effort between the university and TowerJazz, which resulted in development of the industry’s first 64- and 256-element system-on-a chip (SoC) phased arrays operating at 60-GHz. Each wafer-scale SoC comprises a 60-GHz source, amplifiers, distribution network, phase shifters, voltage controlled amplifiers and high-efficiency on-chip antennas. The chips were designed to meet the needs of 5G high-performance Gbps data-rate communication systems with beamforming capabilities and for Aerospace & Defense systems.
Following the development of the phased-array SoCs, Keysight and UC San Diego set out to prove they could be used in a communications link. All work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and Keysight.
Nov 29, 2015
Watch a neural network describe what it sees on a stroll through Amsterdam
Posted by Phillipe Bojorquez in categories: computing, neuroscience, robotics/AI
The results are mixed, of course, but it’s fascinating to watch the neural network make mistakes (and sometimes correct itself) in real time. The open source program being used is called NeuralTalk and was first unveiled last year, with the researchers providing updates on the network’s capabilities since. Other companies and institutions are working on similar technology. Last month, for example, Facebook unveiled a prototype neural network that’s intended to help blind people by describing pictures.
Nov 29, 2015
This Japanese schoolgirl looks so lifelike you won’t believe she’s not human
Posted by Shailesh Prasad in category: computing
Nov 28, 2015
Scientists have discovered a material that could create quantum optical computers
Posted by Shailesh Prasad in categories: computing, materials, particle physics, quantum physics
When people talk about the next-generation of computers, they’re usually referring to one of two things: quantum computers – devices that will have exponentially greater processing power thanks to the addition of quantum superposition to the binary code – and optical computers, which will beam data at the speed of light without generating all the heat and wasted energy of traditional electronic computers.
Both of those have the power to revolutionise computing as we know it, and now scientists at the University of Technology, Sydney have discovered a material that has the potential to combine both of those abilities in one ridiculously powerful computer of the future. Just hold on for a second while we freak out over here.
The material is layered hexagonal boron nitride, which is a bit of a mouthful, but all you really need to know about it is that it’s only one atom thick – just like graphene – and it has the ability to emit a single pulse of quantum light on demand at room temperature, making it ideal to help build a quantum optical computer chip.