Toggle light / dark theme

Chip-based tractor beam Integrated optical tweezers use an intensely focused beam of light to capture and manipulate biological particles without damaging the cells.

Optical manipulation techniques are garnering increased interest for biological applications.


Optical manipulation techniques are garnering increased interest for biological applications. Researchers from Massachusetts Institute of Technology (MIT) have now developed a miniature, chip-based optical trap that acts as a “tractor beam” for studying DNA, classifying cells and investigating disease mechanisms. The device – which is small enough to fit in your hand – is made from a silicon-photonics chip and can manipulate particles up to 5 mm away from the chip surface, while maintaining a sterile environment for cells.

The promise of integrated optical tweezers

Integrated optical trapping provides a compact route to accessible optical manipulation compared with bulk optical tweezers, and has already been demonstrated using planar waveguides, optical resonators and plasmonic devices. However, many such tweezers can only trap particles directly on (or within several microns of) the chip’s surface and only offer passive trapping.

Researchers have long sought to harness the power of light for computing, aiming to achieve higher speeds and lower energy consumption compared to traditional electronic systems. Optical computing, which uses light instead of electricity to perform calculations, promises significant advantages, including high parallelism and efficiency. However, implementing complex logic operations optically has been a challenge, limiting the practical…

👁️🔍 Scientists have developed a transparent camera using see-through technology, paving the way for hidden eye tracking devices in everyday objects. #InvisibleInnovation


The problem is that placing a camera in front of the eyes tends to block the view. And mounting them further away makes them less accurate, more bulky and often more power hungry because of the extra data processing they require. This has limited their utility in many situations.

What eye trackers need is a way of hiding light sensitive pixels in plain sight.

Enter Gabriel Mercier at The Barcelona Institute of Science and Technology in Spain and colleagues who have built transparent photodetectors that can make cameras more or less invisible. They have tested their device and shown it could enable a new generation of eye tracking devices built into ordinary objects such as spectacle lenses, computer monitors and windows. “The operation and appearance of transparent image sensors present a fundamental shift in how we think about cameras and imaging, as these devices can be concealed in plain sight,” they say.

Researchers have developed a cutting-edge optical computing system that represents a major leap in the field of optical logic.

Traditionally, optical logic computing—using light to perform logical operations—has faced challenges when trying to handle more than four inputs due to limitations in…


Researchers have long sought to harness the power of light for computing, aiming to achieve higher speeds and lower energy consumption compared to traditional electronic systems. Optical computing, which uses light instead of electricity to perform calculations, promises significant advantages, including high parallelism and efficiency. However, implementing complex logic operations optically has been a challenge, limiting the practical applications of optical computing.

A recent breakthrough by researchers at Huazhong University of Science and Technology and the Wuhan National Laboratory for Optoelectronics has pushed the boundaries of optical computing. As reported in Advanced Photonics, they developed a large-scale optical programmable array (PLA) capable of handling more complex computations. This new optical PLA uses parallel spectrum modulation to achieve an 8-input system, significantly expanding the capabilities of optical logic operations.

The researchers demonstrated the potential of their optical PLA by successfully running Conway’s Game of Life, a well-known two-dimensional cellular automaton. This achievement marks the first time such a complex model has been executed on an optical platform without relying on for nonlinear computing.

Daniel C. Dennett is one of the most influential philosophers of our time, perhaps best known in cognitive science for his multiple drafts (or “fame in the brain”) model of human consciousness, and to the secular community for his 2006 book Breaking the Spell. Author and co-author of two-dozen books, he’s the Austin B. Fletcher Professor of Philosophy, and Co-Director of the Center for Cognitive Studies at Tufts University, where he taught our very own Point of Inquiry host Lindsay Beyerstein.

Beyerstein and Dennett catch up to discuss Dennett’s newest book, From Bacteria to Bach and Back: The Evolution of Minds. It’s a fresh look at Dennett’s earlier work on the subject of consciousness, taken in new directions as he seeks a “bottom-up view of creation.” Join Dennett and Beyerstein as they discuss the how’s and why’s of consciousness, not just from an evolutionary and neurological standpoint, but also through the lenses of computer science and human culture.

New POI episodes and updates sent right to you. It’s as easy as typing in your email. Your email isn’t shared with anyone else. Just news and updates.

Researchers explore an intriguing phenomenon in quantum systems, drawing inspiration from a recent quantum computing experiment.


Earlier this year, researchers at the Flatiron Institute’s Center for Computational Quantum Physics (CCQ) announced that they had successfully used a classical computer and sophisticated mathematical models to thoroughly outperform a quantum computer on a task that some thought only quantum computers could solve.

Billionaire entrepreneur Elon Musk said on Tuesday (October 29) that Neuralink, the company he co-founded, should look to develop a brain implant which would alleviate neck and back pain. Neuralink develops makes Brain-Computer Interfaces (BCIs) which can be implanted in human brain. Musk’s latest comment came in a post he made on X (formerly Twitter), the social media platform he owns.

I am increasingly convinced that @Neuralink should prioritize making an implant that can eliminate back & neck pain.

Would greatly improve people’s happiness while awake, as well as enhance quality of sleep.

Donate to Closer To Truth and help us keep our content free and without paywalls: https://shorturl.at/OnyRq.

What is information in biology? information is essential for analyzing data and testing hypotheses. But what is information in evolution, population genetics, levels of selection, and molecular genetics? Is computational biology transformational?

Follow Closer To Truth on Instagram for news, announcements, and exciting updates: https://shorturl.at/p2IhM

Terrence William Deacon is an American neuroanthropologist. He taught at Harvard for eight years, relocated to Boston University in 1992, and is currently Professor of Anthropology and member of the Cognitive Science Faculty at the University of California, Berkeley.

Get member exclusives like early access to new content with a free Closer To Truth account: https://closertotruth.com/

Closer To Truth, hosted by Robert Lawrence Kuhn and directed by Peter Getzels, presents the world’s greatest thinkers exploring humanity’s deepest questions. Discover fundamental issues of existence. Engage new and diverse ways of thinking. Appreciate intense debates. Share your own opinions. Seek your own answers.

“Our vision is for chip designers and engineering students, not just suppliers and manufacturers, to co-locate here, to create a value added ecosystem beyond just what it takes to build chips, and that’s how we’re going to create more value in the Phoenix economy,” Mack said.

A further three plants are also planned for the Phoenix site, which could bring TSMC’s total investment in the area to over $120 billion. Tech giant Apple has announced it will buy semiconductors from the fabrication plants.

The plants are anticipated to create 10,000 permanent jobs, and another 80,000 are expected to be created in the surrounding development.