Toggle light / dark theme

For the first time, scientists have discovered that a small region of our brain shuts down to take microsecond-long naps while we’re awake. What’s more, these same areas ‘flicker’ awake while we’re asleep. These new findings could offer pivotal insights into neurodevelopmental and neurodegenerative diseases, which are linked to sleep dysregulation.

Scientists from Washington University in St. Louis (WashU) and the University of California Santa Cruz (UCSC) made these findings by accident, noticing how brain waves in one tiny area of the brain shut down suddenly for just milliseconds when we’re awake. And in this same region, those brain waves jolt suddenly, for the same amount of time, when we’re asleep.

“With powerful tools and new computational methods, there’s so much to be gained by challenging our most basic assumptions and revisiting the question of ‘what is a state?’” said Keith Hengen, Assistant Professor of Biology at WashU. “Sleep or wake is the single greatest determinant of your behavior, and then everything else falls out from there. So if we don’t understand what sleep and wake actually are, it seems like we’ve missed the boat.”

Javad Shabani is an Associate Professor of Physics and the Director of the Center of Quantum Information Physics. Shabani seeks to investigate quantum technology, the future of quantum computing, and quantum sensing applications.

Visit the Shabani Lab: http://shabanilab.com/

Meet more of NYU’s Arts \& Science faculty: https://as.nyu.edu/features/meet-facu

Follow us on Instagram: / nyuartsandscience.

Low-energy nuclear fusion reactions are influenced by the migration of neutrons and protons between fusing nuclei and their isospin compositions. Research conducted using high-performance computational models has shown the importance of isospin dynamics and nuclear shapes, particularly in asymmetric, neutron-rich systems, revealing significant implications for nuclear physics and potential energy applications.

Low-Energy Nuclear Fusion

Low-energy nuclear fusion reactions can potentially provide clean energy. In stars, low-energy fusion reactions during the stages of carbon and oxygen burning are critical to stellar evolution. These reactions also offer valuable insights into the exotic processes occurring in the inner crust of neutron stars as they accumulate matter. However, scientists do not fully understand the underlying dynamics governing these reactions.

Optical spectrometers are versatile instruments that can produce light and measure its properties over specific portions of the electromagnetic spectrum. These instruments can have various possible applications; for instance, aiding the diagnosis of medical conditions, the analysis of biological systems, and the characterization of materials.

Conventional spectrometer designs often integrate advanced optical components and complex underlying mechanisms. As a result, they are often bulky and expensive, which significantly limits their use outside of specialized facilities, such as hospitals, laboratories and research institutes.

In recent years, some electronics engineers have thus been trying to develop more compact and affordable optical spectrometers that could be easier to deploy on a large-scale. These devices are typically either developed following the same principle underpinning the functioning of conventional larger spectrometers or via the use of arrayed broadband photodetectors, in conjunction with computational algorithms.

A team of researchers, affiliated with UNIST has made a significant breakthrough in developing an eco-friendly dry electrode manufacturing process for lithium-ion batteries (LIBs). The new process, which does not require the use of harmful solvents, enhances battery performance while promoting sustainability.

The findings of this research have been published in the July 2024 issue of Chemical Engineering Journal.

Led by Professor Kyeong-Min Jeong in the School of Energy and Chemical Engineering at UNIST, the research team has introduced a novel solvent-free dry electrode process using polytetrafluoroethylene (PTFE) as a binder. This innovative approach addresses the challenges associated with traditional wet-electrode manufacturing methods, which often result in non-uniform distribution of binders and conductive materials, leading to performance degradation.

Infleqtion, the world’s leading quantum information company, announced the installation of a cutting-edge neutral atom quantum computer at the National Quantum Computing Centre (NQCC).


PRESS RELEASE — Infleqtion, the world’s leading quantum information company, is proud to announce the installation of a cutting-edge neutral atom quantum computer at the National Quantum Computing Centre (NQCC). This marks a significant milestone as Infleqtion becomes the first company to deploy hardware at the NQCC under their quantum computing testbed programme. The news comes on the heels of Infleqtion’s rapid advancement in quantum gate fidelity.

Tim Ballance, President of Infleqtion UK, said, “Our recent installation is part of Infleqtion’s dedication to leading facility logistics in partnership with our colleagues at the NQCC. Together, we are establishing crucial infrastructure components such as network infrastructure, safety protocols, and security measures. Infleqtion has completed our second milestone, which includes the installation and in-situ characterisation of primary lasers, optical, vacuum, and electronic subsystems necessary for the quantum computer to function. This accomplishment demonstrates our advanced technology and expertise in the field.”

In parallel to the delivery of the quantum computing testbed hardware, Infleqtion’s quantum software team are working closely on near term applications of quantum computing with NQCC researchers and Infleqtion’s partners Oxfordshire County Council, Riverlane, and QinetiQ. This work includes using Infleqtion’s Superstaq software to apply quantum optimisation to tackle challenges such as traffic management in Oxfordshire. A principal goal of these activities is to demonstrate the practical applications of quantum technology on both a regional and national scale, particularly in areas such as national security and defence.

For at least half a century, it has been popular to compare brains and minds to computers and programs. Despite the continuing appeal of the computational model of the mind, however, it can be difficult to articulate precisely what the view commits one to. Indeed, critics such as John Searle and Hilary Putnam have argued that anything, even a rock, can be viewed as instantiating any computation we please, and this means that the claim that the mind is a computer is not merely false, but it is also deeply confused.

The Spiral Multiverse Theory, proposed by computer engineer Tejas Shinde, challenges the conventional Big Bang theory by suggesting a continuous spiral pattern universe originating from a single point, or singularity. This theory posits that each universe begins with its own bang, forming a network of interconnected universes expanding in a spiral shape. The theory introduces the concept of interdimensional quasars as portals for multiverse travel and suggests each universe undergoes its own inflation without observable changes in the cosmic microwave background. This new perspective on cosmic evolution could open up new avenues for scientific exploration and understanding.

The Spiral Multiverse Theory, proposed by Tejas Shinde, a computer engineer, suggests a continuous spiral pattern universe originating from a single point, known as a singularity. This theory challenges the conventional Big Bang theory, which posits a singular explosive origin for the universe. Instead, the Spiral Multiverse Theory proposes that each universe begins with its own bang, forming a network of interconnected universes. This network, or multiverse, expands in a spiral shape, with the width and length of the arms expanding as the universe expands. The point where all universes connect is referred to as the Everyverse.

The Spiral Multiverse Theory offers a fresh perspective on cosmic evolution and presents a potential path for practical research. It introduces the concept of interdimensional quasars as portals for multiverse travel. The theory also suggests that each universe undergoes its own inflation without observable changes in the cosmic microwave background, a remnant radiation from the Big Bang.