Menu

Blog

Archive for the ‘computing’ category: Page 856

Nov 24, 2015

Hacking the Brain — Restoring Lost Abilities With the Latest Neurotechnologies

Posted by in categories: biotech/medical, computing, cyborgs, genetics, nanotechnology, neuroscience, Ray Kurzweil

A few weeks ago, I wrote about Ray Kurzweil’s wild prediction that in the 2030s, nanobots will connect our brains to the cloud, merging biology with the digital world.

Let’s talk about what’s happening today.

Over the past few decades, billions of dollars have been poured into three areas of research: neuroprosthetics, brain-computer interfaces and optogenetics.

Read more

Nov 23, 2015

Particle Accelerators Could Soon Fit In A Shoebox

Posted by in categories: computing, particle physics

As the challenges of particle physics have become more and more complex, we’ve had to plan and build larger and larger machines to explore the tiny subatomic world. But now, an international group of physicists has developed a technology to miniaturize particle accelerators, which could revolutionize physics and the life sciences.

The team has received a $13.5 million (£9 million) grant to develop a prototype particle accelerator that will fit in a shoebox. The technology being developed is called “accelerator-on-a-chip”. Electrons are made to travel through a channel within a silica chip. Shining a laser onto the chip produces an electric field, and the field is modified by the ridges within the channel. This set-up dramatically accelerates the electrons moving through the channel.

The prototype is based on independent experiments from the SLAC National Accelerator Laboratory in California and Friedrich-Alexander University Erlangen-Nuremberg (FAU) in Germany. Both teams discovered that these chips are capable of accelerating electrons to relativistic speed no matter the speed at which the electron was travelling before entering the channel. Also, the technology is capable of producing a larger acceleration gradient than current labs, which could reduce the size of particle accelerators – 100 meters (330 feet) of accelerator-on-a-chip would produce an acceleration equivalent to the 3.2-kilometer (two miles) SLAC linear accelerator, which is the longest in the world.

Read more

Nov 23, 2015

No lens? No problem for FlatCam

Posted by in categories: computing, electronics, information science

How thin can a camera be? Very, say Rice University researchers who have developed patented prototypes of their technological breakthrough.

FlatCam, invented by the Rice labs of electrical and computer engineers Richard Baraniuk and Ashok Veeraraghavan, is little more than a thin with a mask that replaces lenses in a traditional camera.

Making it practical are the sophisticated computer algorithms that process what the sensor detects and converts the sensor measurements into images and videos.

Read more

Nov 20, 2015

There Is Growing Evidence that Our Universe Is a Giant Hologram

Posted by in categories: computing, cosmology, information science, quantum physics

Old post,but interesting…


If the holographic principle does indeed describe our universe, it could help resolve many inconsistencies between relativistic physics and quantum physics, including the black hole information paradox. It would also offer researchers a way to solve some very tough quantum problems using relatively simple gravitational equations. But before we can be sure that we’re living in the Matrix, there’s still a lot of work to be done.

“We did this calculation using 3D gravitational theory and 2D quantum field theory, but the universe actually has three spatial dimensions plus time,” Grumiller said. “A next step is to generalize these considerations to include one higher dimension. There are also many other quantities that should correspond between gravitational theory and quantum field theory, and examining these correspondences is ongoing work.”

Continue reading “There Is Growing Evidence that Our Universe Is a Giant Hologram” »

Nov 20, 2015

Scientists Crack the Code to Protein Self-Assembly

Posted by in categories: biotech/medical, computing, genetics

New findings out of Duke University will allow medical researchers to act like computer programmers except with genetic code rather than digital.

Read more

Nov 20, 2015

Quantum entanglement achieved at room temperature in semiconductor wafers

Posted by in categories: computing, electronics, particle physics, quantum physics

Entanglement is one of the strangest phenomena predicted by quantum mechanics, the theory that underlies most of modern physics. It says that two particles can be so inextricably connected that the state of one particle can instantly influence the state of the other, no matter how far apart they are.

Just one century ago, was at the center of intense theoretical debate, leaving scientists like Albert Einstein baffled. Today, however, entanglement is accepted as a fact of nature and is actively being explored as a resource for future technologies including quantum computers, quantum communication networks, and high-precision quantum sensors.

Entanglement is also one of nature’s most elusive phenomena. Producing entanglement between particles requires that they start out in a highly ordered state, which is disfavored by thermodynamics, the process that governs the interactions between heat and other forms of energy. This poses a particularly formidable challenge when trying to realize entanglement at the macroscopic scale, among huge numbers of particles.

Read more

Nov 20, 2015

Moore Foundation Gives Stanford $13.5 Million To Build “Accelerator on a Chip”

Posted by in categories: biotech/medical, computing, electronics, mobile phones, particle physics, security

Today’s particle accelerators are massive machines, but physicists have been working on shrinking them down to tabletop scales for years. The Gordon and Betty Moore Foundation just awarded a $13.5 million grant to Stanford University to develop a working “accelerator on a chip” the size of a shoebox over the next five years.

The international collaboration will build on prior experiments by physicists at SLAC/Stanford and Germany’s Friedrich-Alexander University in Erlangen-Nuremberg. If successful, the prototype could usher in a new generation of compact particle accelerators that could fit on a laboratory bench, with potential applications in medical therapies, x-ray imaging, and even security scanner technologies.

The idea is to “do for particle accelerators what the microchip industry did for computers,” SLAC National Accelerator Laboratory physicist Joel England told Gizmodo. Computers used to fill entire rooms back when they relied on bulky vacuum tube technology. The invention of the transistor and subsequent development of the microchip made it possible to shrink computers down to laptop and cell phone scales. England envisions a day when we might be able to build a handheld particle accelerator, although “there’d be radiation issues, so you probably wouldn’t want to hold one in your hand.”

Read more

Nov 20, 2015

The Original Star Trek is Still Driving Innovation at Apple and Google

Posted by in categories: computing, innovation

The Star Trek computer is close. Phasers can’t be far behind.

Read more

Nov 19, 2015

Laser ‘freeze ray’ could change cooling biology labs, computer processors

Posted by in category: computing

Laser cooling isn’t a new idea, but this is the first time it’s actually worked in real-world conditions.

Read more

Nov 19, 2015

Quantum Computers One Step Closer After Australian Breakthrough

Posted by in categories: computing, quantum physics

Engineers from the University of New South Wales, Australia, have made an important breakthrough that brings quantum computers one step closer to reality.

The team created a quantum version of a standard computer code within a silicon chip. The discovery shows that it is possible to construct realistic and reliable quantum computers.

Quantum computers have the potential to solve problems much more quickly than any computer that exists today, as they combine the rules of informatics to phenomena of quantum mechanics that are not observed in everyday life. Namely, the principle of superposition, popularized by Schrödinger’s cat being both alive and dead, and entanglement.

Read more