Toggle light / dark theme

Speech Synthesis from neural decoding of spoken sentences

Technology that translates cortical activity into speech would be transformative for people unable to communicate as a result of neurological impairment. Decoding speech from neural activity is challenging because speaking requires extremely precise and dynamic control of multiple vocal tract articulators on the order of milliseconds. Here, we designed a neural decoder that explicitly leverages the continuous kinematic and sound representations encoded in cortical activity to generate fluent and intelligible speech. A recurrent neural network first decoded direct cortical recordings into vocal tract movement representations, and then transformed those representations to acoustic speech output. Modeling the articulatory dynamics of speech significantly enhanced performance with limited data. Naïve listeners were able to accurately identify and transcribe decoded sentences. Additionally, speech decoding was not only effective for audibly produced speech, but also when participants silently mimed speech. These results advance the development of speech neuroprosthetic technology to restore spoken communication in patients with disabling neurological disorders.

The transhumanist: Russian student who lost sight after explosion developing bionic eyes for himself

Evgeny became wider known to the Russian public in March, after becoming one of the first to implant a chip – between his thumb and forefinger – even though such surgical procedures are forbidden in Russia.


He sleeps two hours a night, plays guitar with a custom prosthesis, and has illegally implanted a microchip. When Evgeny Nekrasov was disfigured by an accident at 14, he decided to leverage future technology to build a new life.

Evgeny, now 21, has no recollection of “messing around” after school with his friends in hometown Vladivostok and picking up the gas canister that exploded in his hands and into his face.

But the days after he woke up without sight in hospital are hard-coded in his memory.

Where Death Ends and Cyborgs Begin, With Futurist Zoltan Istvan

I’m excited to share my new 1 hour interview at Singularity University radio with Steven Parton. Also, check out Singularity Hub and the write-up they did of the interview. We talk all things transhumanism, longevity, Cyborgs, and the future:


Singularity University, Singularity Hub, Singularity Summit, SU Labs, Singularity Labs, Exponential Medicine, Exponential Finance and all associated logos and design elements are trademarks and/or service marks of Singularity Education Group.

© 2019 Singularity Education Group. All Rights Reserved.

Singularity University is not a degree granting institution.

Stem cell map shows how immortal invertebrate regenerates itself

Our bodies do a decent enough job of repairing themselves, able to patch up wounds, fight off infections and even heal broken bones. But that only applies up to a certain point – lose a limb, for example, and it’s not coming back short of a prosthesis. Other creatures have mastered this skill though, and now scientists at the University of California Davis (UC Davis) and Harvard have sequenced the RNA transcripts for the immortal hydra and figured out how it manages to do just that.

Amputee can feel objects again with prosthetic arm inspired by Luke Skywalker

About 17 years ago, Keven Walgamott lost his left hand and part of his forearm in an electrical accident. Now, Walgamott can use his thoughts to tell the fingers of his bionic hand to pick up eggs and grapes. The prosthetic arm he tested also allowed Walgamott to feel the objects he grasped.

A biomedical engineering team at the University of Utah created the “LUKE Arm,” named in honor of the robotic hand Luke Skywalker obtains in “Star Wars: The Empire Strikes Back” after Darth Vader slices off his hand with a lightsaber.

A new study published Wednesday in the journal Science Robotics explained how the arm revived the sensation of touch for Walgamott. The University of Chicago and the Cleveland Clinic were also involved in the study.

Brain-controlled prosthetic hand to become reality

Imagine a patient controlling the movement of his or her prosthetic limb simply by thinking of commands. It may sound like science fiction but will soon become reality thanks to the EU-funded DeTOP project. A consortium of engineers, neuroscientists and clinicians has made great strides in further developing the technology behind more natural and functional prostheses.

The team uses an osseointegrated human-machine gateway (OHMG) to develop a physical link between a person and a robotic prosthesis. A patient in Sweden was the first recipient of titanium implants with the OHMG system. The OHMG is directly fitted to bones in the user’s arms, from which electrodes to nerves and muscle extract signals to control a robotic hand and provide tactile sensations. According to a news item by “News Medical,” the patient will begin using a training prosthesis in the next few months before being fitted with the new artificial hand developed by DeTOP partners. This will help the team evaluate the entire system, including the implanted interface, electronics, as well as wrist and hand functions. Motor coordination and grip strength will also be assessed during the tests.

/* */