Toggle light / dark theme

To help stem the tide of rhino poaching, some biotech companies such as Pembient are seeking to develop and manufacture synthetic horns that are biologically identical to the real thing. The thinking behind this is that the availability of bio-identical fake horns at a substantially lower price than wild horns would cause demand to shift towards the synthetic substitutes, which would reduce people’s incentives to poach rhinos.

I have argued previously that—from the perspective of what would be most effective in curbing poaching—the synthetic horns should not be made to be perfect fakes, i.e., bio-identical. Instead, the synthetic horns should be engineered to be (i) difficult to distinguish from wild horns but (ii) undesirable or unappealing in some respect so that buyers would place little value on them. This proposal makes use of a phenomenon in economics known as adverse selection, which occurs when buyers in a market are unable to distinguish between high- and low-quality products, and their lack of information drives down demand—and, hence, prices—enough that high-quality products (which would be wild horns in the context of rhino horns) cease to be supplied by sellers.

For conservationists and others who are concerned about the fate of the rhinos, it is critical to understand why biotech companies would prefer making bio-identical synthetic horns—rather than undesirable fakes—because of the implications this has for conservation policies. Simply put, it would be more profitable to produce and sell perfect fakes rather than synthetic horns that would be considered undesirable. All else being equal, putting out undesirable fakes that buyers cannot distinguish from the real ones, by reducing demand for horns, would lead to lower prices in the horn market compared to the case with bio-identical synthetic horns. This, of course, would generate less revenue for the producers of synthetic horns.

Read more

It’s like he knew what the main problems of work-cultist capitalism and its socially irresponsible job automation were going to be before the whole mess even got started.

This video is a piece selected from watercourseway1’s longer version called “Alan Watts — Money and Guilt” (account since deleted). Closest copy I can see now is:

https://www.youtube.com/watch?v=QbVsvtKstyw

https://www.youtube.com/watch?v=JbU1TEvXtI8

Is Market Capitalism simply an accident of certain factors that came together in the 19th and 20th centuries? Does the innovation of economics require a new economics of innovation? Is the study of economics deeply affected by the incentive structures faced by economists themselves, necessitating a study of the “economics of economics”? In this broad ranging interview INET Senior Economist Pia Malaney sits down with Eric Weinstein — mathematician, economist, Managing Director of Thiel Capital (as well as her co-author and husband) to discuss these and other issues.

Underlying the seismic shifts in the economy in the last ten years, Dr. Weinstein sees not just a temporary recession brought on by a housing crisis, but rather deep and fundamental shifts in the very factors that made market capitalism the driving force of economic growth for the past two centuries. The most profound of these shifts as Dr. Weinstein sees it, is an end to 20th century style capitalism brought about not by a competing ideology, as many had once feared, but instead by changing technology. As production is driven increasingly by bits rather than atoms, he sees the importance of private goods give way to public goods, undermining a basic requirement of market models. In a different line of thinking, as software becomes increasingly sophisticated it takes on the ability to replace humans not only in low level repetitive tasks but also, with the use of deep learning algorithms, in arbitrarily complex repetitive tasks such as medical diagnosis.

Read more

It’s a scouting mission. I wonder how much this will cost since this is not a sample return.


Asteroid mining company Deep Space Industries (DSI) has announced the first commercial mission to a near-Earth asteroid, with launch planned by the end of the decade.

deep space industries

Deep Space Industries has announced its plans to fly the world’s first commercial interplanetary mining mission. A spacecraft known as “Prospector-1” will fly to and rendezvous with a near-Earth asteroid, investigate the object and determine its value as a source of space resources. This mission will be an important step in the company’s longer term plans to harvest and supply in-space resources to support the growing space economy.

Indeed, if we set ethical and safety objections aside, genetic enhancement has the potential to bring about significant national advantages. Even marginal increases in intelligence via gene editing could have significant effects on a nation’s economic growth. Certain genes could give some athletes an edge in intense international competitions. Other genes may have an effect on violent tendencies, suggesting genetic engineering could reduce crime rates.


We may soon be able to edit people’s DNA to cure diseases like cancer, but will this lead to designer babies? If so, bioethicist G Owen Schaefer argues that China will lead the way.

Read more

Elon Musk has been a busy man lately as he works to transition the world to renewable energy and sustainable transportation with the goal of decarbonizing the global economy to meet the challenge of climate change. To meet that goal, Tesla will need to address “high passenger-density urban transport” – and Musk just confirmed plans to create a fully autonomous electric Minibus using the Model X chassis.

Read more

Tethers Unlimited, Inc. (TUI) announced that it has signed a Public-Private Partnership with NASA to deliver a HYDROS™ propulsion system for a CubeSat mission. Concurrently, TUI has signed an associated contract to provide three HYDROS thrusters sized for Millennium Space Systems’ (MSS) ALTAIR™ class microsatellites to support three different flight missions. Total contract value for the two efforts is $2.2M.

The HYDROS propulsion system uses in-space electrolysis of water to generate hydrogen and oxygen gas, which it then burns in a bipropellant thruster. This water-electrolysis method allows small satellites to carry a propellant that is non-explosive, non-toxic, and unpressurized. The hydrogen and oxygen generated on-orbit will enable high-thrust and high-fuel-efficiency propulsion so these small satellites can perform missions requiring orbital agility and long-duration station-keeping.

The partnership with NASA is a cost-sharing program funded under NASA’s Space Technology Mission Directorate’s “Utilizing Public-Private Partnerships to Advance Tipping Point Technologies” Program. In this effort, TUI will conduct lifetime and environmental testing of prototypes of HYDROS systems sized for CubeSats and microsatellites and then deliver a flight unit HYDROS thruster intended for testing on a CubeSat mission as part of NASA’s Pathfinder Technology Demonstration Program, at Ames Research Center, Moffett Field, California.

The purchase of HYDROS thrusters by MSS represents a significant commercial customer investment that will enable the HYDROS Public-Private Partnership to develop and deliver a transformative propulsion technology meeting needs for both NASA and commercial small satellite endeavors.

“We are honored to have the opportunity to partner with NASA and Millennium Space Systems to demonstrate this revolutionary thruster technology,” said Dr. Rob Hoyt, TUI’s CEO and Chief Scientist. “Traditionally it has been very difficult to launch small satellites with propulsion capabilities due to the risks that standard propellants such as hydrazine pose to the launch vehicle’s primary payload. HYDROS will enable highly-maneuverable satellites to launch as secondary payloads without posing a significant risk to primary payloads. In the future, when asteroid and lunar mining efforts begin to provide in-situ resources, the HYDROS technology will enable use of the water ice available on asteroids and the Moon to propel the spacecraft, equipment, and resources needed for a robust in-space economy.”