Toggle light / dark theme

CSIS will host a public event on responsible AI in a global context, featuring a moderated discussion with Julie Sweet, Chair and CEO of Accenture, and Brad Smith, President and Vice Chair of the Microsoft Corporation, on the business perspective, followed by a conversation among a panel of experts on the best way forward for AI regulation. Dr. John J. Hamre, President and CEO of CSIS, will provide welcoming remarks.

Keynote Speakers:
Brad Smith, President and Vice Chair, Microsoft Corporation.
Julie Sweet, Chair and Chief Executive Officer, Accenture.

Featured Speakers:
Gregory C. Allen, Director, Project on AI Governance and Senior Fellow, Strategic Technologies Program, CSIS
Mignon Clyburn, Former Commissioner, U.S. Federal Communications Commission.
Karine Perset, Head of AI Unit and OECD.AI, Digital Economy Policy Division, Organisation for Economic Co-Operation and Development (OECD)
Helen Toner, Director of Strategy, Center for Security and Emerging Technology, Georgetown University.

This event is made possible through general support to CSIS.

A nonpartisan institution, CSIS is the top national security think tank in the world.
Visit www.csis.org to find more of our work as we bring bipartisan solutions to the world’s greatest challenges.

Want to see more videos and virtual events? Subscribe to this channel and turn on notifications: https://cs.is/2dCfTve.

Artificial intelligence is a target for every existing industry Or is it just another hyped innovation? It comes with no surprise how AI today becomes a catchall term that is said out loud in the job market. The US and China are in nip and tuck in the AI race for supremacy. Although China aims to be the technology leader by 2030, the economy is still at a struggle phase with a slowdown and trade war with the US. Emerging trends in artificial intelligence (AI) significantly points toward having a geopolitical disruption in the foreseeable future. As much as the fourth industrial revolution augmented the rise of advanced economies, so will machine learning and artificial intelligence transform the world.

And they could enter service by 2030.The automotive world is transforming to meet the needs of the future.


Hyundai has already made it very clear that it’s making a serious play at next-gen electric aviation, establishing its own eVTOL subsidiary Supernal late last year and promising to flex its automotive-grade manufacturing muscle to get air taxis built in bulk. Now, the company has made a presentation at the Vertical Flight Society’s H2 Aero workshop to confirm that it’s also bringing its hydrogen expertise into the aviation world.

Hyundai/Kia and Toyota, of course, have been the two main hydrogen fuel cell stalwarts in the automotive industry. Batteries make more sense for most passenger car applications globally, but Japan and Korea are committed to building a “hydrogen economy” powering much more than personal transport, so these companies in particular have persisted with building and selling relatively small numbers of fuel cell-electric cars like the Nexo and Mirai.

That means they’ve got full hydrogen powertrains designed, manufactured in the tens of thousands of units, and fully crash tested to meet automotive safety certification standards in multiple countries – an excellent head start, you might say, if you’re interested in rolling that expertise out into the aviation market. And that’s definitely an avenue Hyundai is looking to work through Supernal.

The only way life extension would remain financially out of reach is if we vote ourselves into a dystopia.


Dr David Sinclair explains why aging therapies will be eventually affordable to us in this clip.

David Sinclair is a professor in the Department of Genetics and co-director of the Paul F. Glenn Center for the Biology of Aging at Harvard Medical School, where he and his colleagues study sirtuins—protein-modifying enzymes that respond to changing NAD+ levels and to caloric restriction—as well as chromatin, energy metabolism, mitochondria, learning and memory, neurodegeneration, cancer, and cellular reprogramming.

Dr David Sinclair has suggested that aging is a disease—and that we may soon have the tools to put it into remission—and he has called for greater international attention to the social, economic and political and benefits of a world in which billions of people can live much longer and much healthier lives.

Dr David Sinclair is the co-founder of several biotechnology companies (Life Biosciences, Sirtris, Genocea, Cohbar, MetroBiotech, ArcBio, Liberty Biosecurity) and is on the boards of several others.

NASA associate administrators participate in a panel on the collaboration of the Artemis Program and the aerospace industry in building the space economy at the 37th Annual Space Symposium in Colorado Springs, Colorado.

Speakers include:
- Dr. Thomas Zurbuchen, Associate Administrator for NASA’s Science Mission Directorate.
- Jim Free, Associate Administrator for NASA’s Exploration Systems Development Mission Directorate.
- Jim Reuter, Associate Administrator for NASA’s Space Technology Mission Directorate.
- Ken Bowersox, Deputy Associate Administrator for NASA’s Space Operations Mission Directorate.

The panel is moderated by Northrop Grumman/Space Foundation’s Lauren Smith.

A new tool speeds up development of vaccines and other pharmaceutical products by more than 1 million times while minimizing costs.

In search of pharmaceutical agents such as new vaccines, industry will routinely scan thousands of related candidate molecules. A novel technique allows this to take place on the nano scale, minimizing use of materials and energy. The work is published in the journal Nature Chemistry.

More than 40,000 molecules can be synthesized and analyzed within an area smaller than a pinhead. The method, developed through a highly interdisciplinary research effort in Denmark, promises to drastically reduce the amounts of material, energy, and economic cost for .

Russia’s space director Dmitry Rogozin said on Saturday in a tweet that he would halt ties between partners at the ISS and other joint space projects until the sanctions against Moscow were removed. The leader of Roscosmos complained that the aim of the sanctions was to “kill Russian economy and plunge our people into despair and hunger, to get our country on its knees.”

Rogozin also added that the sanctions will ultimately fail, saying that they “won’t succeed in it, but the intentions are clear.” “That’s why I believe that the restoration of normal relations between the partners at the International Space Station (ISS) and other projects is possible only with full and unconditional removal of illegal sanctions,” Rogozin explained.

A suspension of many partnerships

Rogozin’s decision includes a suspension of Roscomos’ partnership with NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA), Rogozin further added.

There’s still a long way to go, but it’s an important milestone.


Ten years ago, solar and wind didn’t even make up 1% of our global energy mix. Now, in just a decade, they’ve reached 10%. It may not seem like much, but becoming such a significant part of the global energy mix in such a short time is remarkable — though there’s still a long way to go.

The past couple of years have been horrendous in more ways than one, but that doesn’t mean all is bad in the world. In fact, renewable energy continued its impressive growth, according to research from Ember, a climate and energy think tank.

As the world recoiled after the first year of the COVID-19 pandemic, economies were eager to reopen, and demand for energy surged. Some of what growth was covered by coal, which experienced its fastest growth since 1985, but renewables also rose to the challenge.

The majority of commercial chemicals that enter the market in the United States every year have insufficient health and safety data. For pesticides, the U.S. Environmental Protection Agency uses a variety of techniques to fill data gaps in order to evaluate chemical hazard, exposure and risk. Nonetheless, public concern over the potential threat that these chemicals pose has grown in recent years, along with the realization that traditional animal-testing methods are not pragmatic by means of speed, economics or ethics. Now, researchers at the George Washington University have developed a new computational approach to rapidly screen pesticides for safety, performance and how long they will endure in the environment. Moreover, and most importantly, the new approach will aid in the design of next-generation molecules to develop safer pesticides.

“In many ways, our tool mimics computational drug discovery, in which vast libraries of chemical compounds are screened for their efficacy and then tweaked to make them even more potent against specific therapeutic targets,” Jakub Kostal, an assistant professor of chemistry at GW and principal investigator on the project, said. “Similarly, we use our systems-based approach to modify to make them less toxic and more degradable, while, at the same time, making sure they retain good performance. It’s a powerful tool for both industry and that can help design new, safer analogs of existing commercial agrochemicals, and so protect human life, the environment and industry’s bottom line.”

Using their model, the team analyzed 700 pesticides from the EPA’s pesticide registry. The model considered a pesticide’s likely persistence or degradation in the environment over time, its safety, and how well it performed at killing, repelling or controlling the target problem.