Menu

Blog

Archive for the ‘economics’ category: Page 82

Oct 9, 2021

Preparing For a World With Longer Life Expectancy

Posted by in categories: economics, education, ethics, life extension

Acclaimed Harvard professor and entrepreneur Dr. David Sinclair believes that we will see human life expectancy increase to at least 100 years within this century. A world in which humans live significantly longer will have a major impact on economies, policies, healthcare, education, ethics, and more. Sinclair joined Bridgewater Portfolio Strategist Atul Lele to discuss the science and societal, political, systemic and ethical implications of humans living significantly longer lives.

Recorded: Aug 30 2021

Continue reading “Preparing For a World With Longer Life Expectancy” »

Oct 9, 2021

How Facebook is planning to connect 1 billion people to the internet using robotics

Posted by in categories: business, economics, internet, robotics/AI

Facebook has announced some exciting connectivity technologies that will enable the company to provide access to fast and affordable internet service to the next billion people as well as enhance existing infrastructure projects.

The company said that Facebook Connectivity has helped provide quality internet connectivity to over 500M people since 2013. Now, the company aims to enable affordable, high-quality connectivity for another one billion people at less cost and with greater speed by leveraging emerging technologies.

Commenting on the new connectivity technologies during the unveiling, Dan Rabinovitsj, VP of Facebook Connectivity said: “We have seen that economies flourish when there is widely accessible internet for individuals and businesses.”

Oct 8, 2021

FINALLY! SpaceX Is Testing Their New Starship Droneship!

Posted by in categories: drones, economics, space travel

https://www.youtube.com/watch?v=Ds9EcRBZzWE

One of the most critical aspects of SpaceX’s quest for the reusability of its space hardware is the recovery of its booster. To achieve this, SpaceX decided to land its boosters on the sea. However, the boosters land on large drone ships to prevent losing the booster and transport it back to land.
After many successful landings and recovery of the boosters, the large and dependable drone ships have become a vital link in SpaceX’s dream to make space travel affordable. SpaceX recently added another drone ship to the pair it had in service.
Join us as we explore SpaceX’s insane new drone ship!
To the armchair engineer, landing a rocket in the sea is suicide as many things can go wrong. To start with, when floating on the sea, the drone ship or barge is small compared to all the land available for the booster to land on.
Compounding the problem is that the drone ship itself can be rocked about on the sea, more than 300 km off the coast.
So, combining the size and instability of the drone ship, the booster can miss the drone ship and crash into the sea, making it harder or even impossible to recover.
However, many things have gone wrong as SpaceX tried to land a rocket on land, with several boosters crashing and bursting into flames.
Apart from that, SpaceX has very good reasons to prefer a sea landing for its boosters, and the reason has to do with fuel.
Fuel is a critical component on any mission because the engineers have to balance carrying enough quantity of it and keeping the rocket as light as possible. As you can imagine, the Falcon 9 rockets are heavy, at more than half a million kilograms which means fuel is a premium.
This is how it breaks down:
When you launch to space and the booster returns, you need to slow down the speed from more than 8,000 km/h down to zero. This is done by reigniting the engine, and it requires fuel.
The fuel has to come from the leftover after boosting the upper stage.
This is where it gets interesting.
If you blasted a payload to low orbit, for example, you would have more than enough fuel for the landing. However, if the mission was destined for beyond Earth’s orbit, you will need more fuel because you have to launch faster. This will leave you with no fuel for the landing.
This will be a big blow to SpaceX’s dream of reusing its boosters. Recall that the company wants to launch missions to Mars, which will require lots of fuel to attain the speed necessary for launch but not enough fuel for landing.
However, there is a way out of this problem with the aid of geography.
When SpaceX launches from Florida, the rocket heads East over the Atlantic Ocean. So making the rocket land at sea and not having to return to the launch site will reduce the fuel required because the distance is shorter.
This means for more ambitious launches, it makes sense for SpaceX to land on the sea.
As Musk put it at a conference, “For half our missions, we will need to land out to sea. Anything beyond Earth is likely to need to land on the ship.”
Now, what motivation does SpaceX have to land and reuse its boosters?
The motivation is money. SpaceX wants to save money on its launches, and refurbishing a rocket saves time and costs a fraction of building a new one.
Just how much money is SpaceX saving?
We might never get an actual figure because it is a trade secret, but it is a play on several factors.
For example, to save some fuel for landing, it means you have to reduce your payload. For the Falcon 9 that means a reduction of up to 40 percent in revenue, according to Musk’s tweet:

Continue reading “FINALLY! SpaceX Is Testing Their New Starship Droneship!” »

Oct 5, 2021

Larry Curley — Executive Director — The National Indian Council on Aging (NICOA)

Posted by in categories: biotech/medical, economics, government, life extension

Comprehensive health, social services and economic well-being for american indian and alaska native elders — larry curley, executive director, national indian council on aging.


Mr. Larry Curley is Executive Director of The National Indian Council on Aging (https://www.nicoa.org/), a 501©(3) nonprofit organization founded in 1976 by members of the National Tribal Chairmen’s Association who called for a national organization focused on the needs of aging American Indian and Alaska Native elders. The mission of NICOA is to advocate for improved comprehensive health, social services and economic well-being for American Indian and Alaska Native elders.

Continue reading “Larry Curley — Executive Director — The National Indian Council on Aging (NICOA)” »

Oct 4, 2021

How to get AI analytics right

Posted by in categories: biotech/medical, economics, robotics/AI

Enterprises of all sizes and across virtually all markets are scrambling to augment their analytics capabilities with artificial intelligence (AI) in the hopes of gaining a competitive advantage in a challenging post-pandemic economy.

Plenty of anecdotal evidence points to AI’s ability to improve analytics, but there seems to be less conversation around how it should be implemented in production environments, let alone how organizations should view it strategically over the long term.

Oct 2, 2021

Kimberly A Reed — Fmr EXIM Chairman / President — Stimulating STEM & Securing U.S. High-Tech Economy

Posted by in categories: biotech/medical, business, economics, finance, food, government, health, internet, robotics/AI

Stimulating STEM Innovation & Securing U.S. High-Tech Economy — Kimberly A. Reed, Fmr President and Chairman Export-Import Bank of the United States.


Kimberly A. Reed just finished up a 2-year term as President and Chairman of the Board of Directors of the Export-Import Bank of the United States (EXIM — https://www.exim.gov). She was the first woman to lead EXIM in the agency’s 87-year history, was the first recipient of EXIM’s highest honor, the Franklin D. Roosevelt Award, and was confirmed by the U.S. Senate in 2019 on a strong bi-partisan basis.

Continue reading “Kimberly A Reed — Fmr EXIM Chairman / President — Stimulating STEM & Securing U.S. High-Tech Economy” »

Sep 30, 2021

United Nations

Posted by in categories: economics, employment, government

https://www.youtube.com/watch?v=cX2tXnUL-cY&feature=youtu.be

LIVE.


UNTV Live Schedule — 28 September 2021.

Continue reading “United Nations” »

Sep 29, 2021

The iPhone of Robotics

Posted by in categories: biotech/medical, business, economics, food, health, information science, mobile phones, robotics/AI

The killer product of robotics is hidden in plain sight and may be just a few years away. Summary The robotic space is still waiting for a truly widespread general purpose product which deeply changes our everyday life. I argue that such a product could be a low cost collaborative manipulator powered by an ecosystem of AI-based applications. It will create value in novel ways and automate tasks at an unthinkable price point, impacting both our homes and businesses. As in the case of smartphones, the real value is in the apps sitting in the app store, which will be built by a new generation of startups and creators. I analyse where we stand and I predict that we are just a few years away from seeing such a product go live. Manipulators State of the Art in Brief When thinking about manipulators or robotic arms, the first thing that pops to your mind is probably an industrial robot, as the one in the picture: These robots are precise, fast, durable and capable of lifting heavy weights. They are also very dangerous, therefore they need to be fenced and kept separate from human workers. A more recent development is the introduction of collaborative robots or cobots. These robots are generally slower than industrial robots, but they are safe to work in direct contact with humans thanks to sensors and algorithms to detect collisions and stop the robot motion just in time, enabling many new use-cases. The market leader is Universal Robotics, a Danish company which recently sold its robot number 50.000. In 2021 the cheapest UR cobot can be purchased for about 20.000 dollars, but there are more affordable competitors which are sold for less than 10.000 dollars. The future looks bright for collaborative robots and for us consumers, since the price is expected to keep going down quickly following Wright’s Law, that is the price should be reduced by a fixed percentage every times the number of units sold is doubled. Keep in mind that UR sold its robot number 25.000 in 2,018 so it doubled the number of all-time robots sold in just two years! Still, if you go through the tech specs of these arms you will start noticing something, see here and here. Current robotic arms are overqualified for many of the mundane tasks we would like them to do, for instance in our kitchens and homes. Seriously, look at the UR5, when was the last time you loaded a dishwasher with 0.1 millimeter precision? Or which kitchen appliance did you use for 35.000 hours at full capacity? Or what clothes weigh 5+ kilograms? On the other side of the tech specs there is a market for toy robots and desktop robots, which are inexpensive, but unfortunately suffer from limited arm reach, payload and overall reliability. Can a hybrid be built? I think so, and it may very well be the killer product of robotics. What does the iPhone of Robotics look like? The killer product of robotics may be a collaborative robot which is intuitive to use and low cost, by making trade offs with speed and accuracy. Drawing from my research, this is how I believe it will look like: Must Have: Low cost: Less than 1,000 USD for the robot hardware. Compatible with a wide set of end effectors, to cover multiple use cases. Lightweight and Compliant: Able to interact safely in environments with untrained staff and children, easy to physically carry around. Self-contained and Portable: it includes a computing platform, with a form factor similar to a Raspberry pi or Jetson Nano and a standard networking stack (Wifi, Bluetooth). It should be easy to deploy third party apps on it. Nice to Have: 6 Degrees of Freedom (while 7 DOF gives more flexibility, 6 DOF can already reach any position in the workspace, but are easier to control and more affordable) Reach 700mm Payload 2Kg Repeatability 1mm Max Speed 0.5 m/s Operating Lifetime 10,000 hours at full capacity. Open Source and ROS compatible Payload and Reach are very use cases dependent. If I had to pick a sweet spot for a general purpose robot, I would say 3kg and 750mm. One of the crucial points above is the possibility to install third party apps. Today, robotic companies are forced to curate the whole software-hardware stack to deliver a product, so the company building the robot behaviours (say the algorithms to control the stirring movements of an omelette-making robot) are also the companies selling the robotic hardware to the end customer. Sometimes they are also the companies building the hardware, even if it’s more common to see companies buying hardware off the shelf, say a UR cobot, and customising it. On top of this, today the same companies also build the user interface, say a mobile app, to actually control the robot. When a popular general purpose cobot will be available on the market, there will start to be a clear division between the company selling the general purpose hardware (and the onboard app-store) and the companies building apps for it, that is the skills of the cobot. Translated into the smartphone dictionary, the robot and app store store manufacturer is Apple, while the app developers are Facebook, Netflix, etc. To further stress the analogy, you may think of your smartphone as a very limited robot, with capabilities such as making sounds and coloring the screen, but with no movement capabilities (apart from vibrations!). A cobot will have multiple apps installed, exactly as our smartphones, and will be able to perform different tasks as programmed by domain experts in each use case. These domain experts will be 100% software-based robotic companies. It is in this period that we will see an exponential growth in cobot capabilities, as companies can iterate quickly in software. To sustain this demand of new use cases, companies will mainly take approaches based on computer vision, supervised learning and reinforcement learning. In the very long term, I see a further division between robotic companies building the low-level APIs to control the robot and companies specialising in building the user interface to interact with the robot, which will include mobile apps, vocal and gesture commands. In the figure: Evolution of the robotic ecosystem over time (from 2026+ on, with robot manufacturers I’m only referring to the manufacturers of cobots allowing third party apps). The years indicate approximately the predicted first time we will see these models hitting the market. What will we use these collaborative robots for? Pretty much everything. Let’s do a quick calculation to see why I say this. Let’s assume that the apps will have a subscription fee comparable to today’s smartphone apps, say the approximately 20 USD of Nextlix monthly subscription. By the way, given the success of the freemium model for mobile apps, I would not be surprised to see free to use robot skills. Also let’s say that each cobot will last about 3 years. This is much less than what a cobot could last, but it’s in line with the replacement cycle of our high end gadgets such as smartphones (we should strive to do better, the environment would be thankful). As a final assumption, let’s add another 30 USD monthly for a subscription package that includes robot maintenance and support plus the cost of electricity. Over 3 years, that’s about 50 × 36 + 1,000 = 3,000 USD to buy the robot and use it with only 1 app, or 3 USD every day. Let’s take as a reference the lowest possible minimum wage in London, the one for apprentices, which is about 5 USD per hour. This means that for the robot investment to breakeven, it’s enough to have the robot automate just 36 minutes worth of tasks a day! With the 2022 15 USD minimum wage in California, this goes down to 12 minutes! Personally I’m very excited by the role that they will play in removing repetitive tasks in our kitchens, lowering the cost of preparing food and increasing consistency without compromising on food quality. The first deployments will be in commercial kitchens, including dark kitchens, cafeterias and restaurants, and then they will start entering the home kitchen market. For commercial kitchens this will be the second wave of robotics, as more expensive collaborative robots are starting to enter kitchens as we speak, given that their economics are viable today. I may cover this topic in a future blog post. Inside our homes they will take on tasks like washing machine load/unloading, clothes folding, laundries and overall home clean-up. There are multiple ways for manipulators to be able to move to different places, including being mounted on mobile bases and rails, but I believe we will see very low tech solutions get traction first: small fixed bases where the robot can clamp and get power, after being physically moved there by the owner (a “robot charger”?). Other areas that will be impacted by low cost robots include areas with repetitive manual actions like laboratories, hospitals, agriculture, packaging, light manufacturing and remote areas which require infrequent manual intervention. We will also see completely novel applications in the area of communication (“physical” zoom calls!?), remote work and entertainment. I want to stress that all these use cases are very price sensitive, so it’s really the ability of robot manufacturers to offer very low cost that will enable this ecosystem to start blossoming. I see the low cost coming from four main sources: Lowering of all the specs that makes current collaborative robots overqualified. The decoupling of selling hardware vs selling the final use case. New revenue streams: app-store fees, data-mining, new advertisement channels. Robotic-as-a-Service business models, that is other revenue streams in the form of support, maintenance, upselling. Where we stand and what to expect next Let’s start from the hardware, how far are we all from good-enough specs at a good price point? There is work to do, but we are getting there. This is an early stage prototype that we built last year at Nyrvan (in 2 weeks, we didn’t tune the PID parameters much, which resulted in quite some shaking!) The 6 DOF cobot in the video could perform basic kitchen tasks, with a 1kg payload. We used carbon fiber tubes for the links, we 3D printed the joints structure in PLA (probably something with higher heat resistance would have been better), used an Arduino as computing unit and a 48V power supply. All these components can be bought cheaply on Amazon. The lion share of the bill of materials is taken by the actuators. We have chosen the servo brushless motors from Gyems model RMD-X7, RMD-X8 and RMD-X8 PRO, for about 2000 USD in total. Another option that we considered was T-Robot. In total we spent less than 2,500 USD to assemble a cobot, buying all the components at retail price. Actually bulk discounts are consistent for these robotic components, going up to 40%. As building hardware is not our focus, this was simply an excellent exercise in probing the future of robotics. During my research, I have discovered interesting projects and startups which look well equipped to offer or inspire these robotic platforms in the future. I’m going to cover a few of those here, but I’m surely missing many good ones. Please let me know about other promising projects in the comments! Project Blue from Berkeley’s Robot Learning Lab developed a Quasi-Direct Drive for Low-Cost Compliant Robotic Manipulation, which can be used for daily tasks such as folding clothes. They also included a manufacturing BoM estimate in the paper, in which they show they can bring the cost of the robot arm down to 1,250 USD, assuming 10.000 units sold. Elephant Robotics is selling myCobot which introduces the very interesting concept of selling small cobots with an integrated computing unit (a Raspberry Pi). The cobots can integrate with ROS and overall they tick many of the boxes of an iPhone of robotics. Innfos is another Chinese company, with a very interesting modular robotic arm, with amazing specs for less than 1,000 USD. Unfortunately, after a successful kickstarter campaign, they had internal issues and had to close the company. A shout out also to Skyentific 0 which runs a super thoughtful youtube channel on robotics. I spoke with him some time ago, he is really a cool guy and he is spreading a lot of knowledge on low cost robotic arms. Overall the area is still very niche and projects often have troubles going from early stage to growth stage: it’s hard to get funded, since there is a strong bias against hardware-heavy projects by angel investors and venture capitalists. Part of the problem is also due to the lack of demand, since in the past it was very hard to program collaborative robots and therefore hard and expensive to build actual products out of collaborative robots. Now, I would not say that today it’s easy to build robotic software (very often the best backend/frontend/devops practices are ignored in robotics, in which a good share of developers comes from an academic or mechanical/electronics background), but things are getting way more standardised and scalable thanks to standards like the Robotic Operating System and large pretrained computer vision models. Advancement in AI models applied to control and manipulation are also opening up dynamic use-cases like pick-and-place of arbitrary objects. Regarding a proper app store, it’s a chicken-egg issue, we will not see it until an affordable general-purpose cobot platform pops up. Also today there is a very small number of developers able to program these robots and they are employed by the companies selling vertically the use-case. So, what to expect next? We can expect the cost of the hardware to keep going down in the next few years, thanks to the increasing sales and the improving state of the software development cost. Tech directions to lower the cost of the cobots hardware also include: Using modular designs, therefore cutting down the cost of each degree of freedom thanks to economies of scale. Using gearless motors and other last gen motors to get rid of expensive force-torque sensors, brakes and harmonic gears. Using vision based control, to ease inverse kinematics and reduce the cost of position encoders and sensors. In terms of geography, all indications point to Chinese companies taking the lead in terms of development, at least regarding the hardware platform. The software situation is much more distributed. I think it would be nice to conclude this blogpost with an actual prediction, so here we go: If I had to guess the exact timeline, I would say that we will see a collaborative robot with the specs and price-point written above announced by the end of 2,026 so 5 years. I believe shortly after, say 1–2 years, we will see the first ecosystem approaches and the first cobots shipping with an app-store. What do you think? Let me know in the comments!

Sep 29, 2021

WHO and partners call for urgent action on meningitis

Posted by in categories: biotech/medical, economics, health

Today, the World Health Organization (WHO) and partners launched the first ever global strategy to defeat meningitis — a debilitating disease that kills hundreds of thousands of people each year. By 2,030 the goals are to eliminate epidemics of bacterial meningitis – the most deadly form of the disease – and to reduce deaths by 70% and halve the number of cases. The organizations estimate that in total, the strategy could save more.

Than 200,000 lives annually and significantly reduce disability caused by the disease. This strategy, the Global Roadmap to Defeat Meningitis by 2,030 was launched by a broad coalition of partners involved in meningitis prevention and control at a virtual event, hosted by WHO in Geneva. Its focus is on preventing infections and improving.

Care and diagnosis for those affected.“Wherever it occurs, meningitis can be deadly and debilitating; it strikes quickly, has serious health, economic and social consequences, and causes devastating outbreaks,” said Dr Tedros Adhanom Ghebreyesus, WHO Director-General.

Sep 25, 2021

Electrified road to wirelessly charge EVs in Michigan

Posted by in categories: business, economics, employment, energy, sustainability, transportation

Michigan will become the first state in America to deploy inductive vehicle charging technology in roads, in an effort to accelerate the adoption of electric vehicles (EVs).

Governor of Michigan, Gretchen Whitmer, made the announcement during the opening ceremony of the Motor Bella auto show on Tuesday. The Inductive Vehicle Charging Pilot is a partnership between Michigan’s Department of Transportation (MDOT) and the Office of Future Mobility and Electrification (OFME). It will deploy an electrified roadway system allowing electric cars, buses, shuttles and other vehicles to charge while driving, allowing them to operate continuously without stopping to charge. This will address range anxiety, while turning public roads into safe, sustainable, shared energy platforms.

“Michigan was home to the first mile of paved road, and now we’re paving the way for the roads of tomorrow with innovative infrastructure that will support the economy and the environment, helping us achieve our goal of carbon neutrality by 2050,” said Governor Whitmer. “This project reinforces my commitment to accelerating the deployment of electric vehicle infrastructure in Michigan and will create new opportunities for businesses and high-tech jobs amidst the transition to electric vehicles.”

Page 82 of 234First7980818283848586Last