Toggle light / dark theme

If there is one thing science fiction movies and comics have taught us, it’s that humans have no.
limitations, and we will one day be able to open a portal that transverses into another dimension. What if I tell you that day is closer to us than ever? This is the latest discovery made.
by scientists and is by far the biggest of the century.
Will we finally get to find out if we are the only beings in the cosmos? What technology have.
scientists designed capable of making interstellar teleportation possible? How and where will.
the portals take us?
Join us as we explore how scientists have finally found a way to open a portal to another.
dimension.

Disclaimer Fair Use:
1. The videos have no negative impact on the original works.
2. The videos we make are used for educational purposes.
3. The videos are transformative in nature.
4. We use only the audio component and tiny pieces of video footage, only if it’s necessary.

DISCLAIMER:
Our channel is purely made for entertainment purposes, based on facts, rumors, and fiction.

Copyright Disclaimer under section 107 of the Copyright Act 1976, allowance is made for “fair use” for purposes such as criticism, comment, news reporting, teaching, scholarship, education, and research. Fair use is a use permitted by copyright statutes that might otherwise be infringing.

Set to be one of the largest, if not the largest, investment opportunity in the decades to come, longevity is a rapidly accelerating field; the Longevity Investors Conference targets the global investor community, bringing together institutional investors and top class experts for networking and exploration of relevant insights into the field, as well as expert education and investment opportunities.

Longevity. Technology: It’s not long to wait, now until the Longevity Investors Conference, which takes place later this month in Gstadt, Switzerland. The speaker list is full of longevity pioneers and visionaries, and we have been lucky enough to be given the opportunity to ask them some of our burning longevity questions.

Longevity. Technology readers can get their exclusive invitation to the leading investors-only longevity conference HERE.

Strenuous cognitive work leads to an accumulation of glutamate in the prefrontal cortex, according to new research published in the journal Current Biology. The new findings suggest that mental fatigue is a neuropsychological mechanism that helps to avert the build up of potentially toxic byproducts of prolonged cognitive activity.

“Nobody knows what mental fatigue is, how it is generated and why we feel it,” said study author Antonius Wiehler, a member of the Motivation, Brain and Behavior Lab at Pitié Salpêtrière Hospital in Paris. “It has remained a mystery despite more than a century of scientific research. Machines can do cognitive tasks continuously without fatigue, the brain is different and we wanted to understand how and why. Mental fatigue has important consequences: for economic decisions, for management at work, for education at school, for clinical cure, etc.”

The researchers were particularly interested in the role of glutamate, an excitatory neurotransmitter that is involved in a variety of cognitive functions, including learning and memory. In addition, glutamate plays a role in controlling the strength of synaptic connections. Too much or too little glutamate can lead to neuronal dysfunction, so it is critical that this neurotransmitter is tightly regulated.

Started out as an interview ended up being a discussion between Hugo de Garis and (off camera) Adam Ford + Michel de Haan.
00:11 The concept of understanding under-recognised as an important aspect of developing AI
00:44 Re-framing perspectives on AI — the Chinese Room argument — and how can consciousness or understanding arise from billions of seemingly discreet neurons firing? (Should there be a binding problem of understanding similar to the binding problem of consciousness?)
04:23 Is there a difference between generality in intelligence and understanding? (and extentionally between AGI and artificial understanding?)
05:08 Ah Ha! moments — where the penny drops — what’s going on when this happens?
07:48 Is there an ideal form of understanding? Coherence & debugging — ah ha moments.
10:18 Webs of knowledge — contextual understanding.
12:16 Early childhood development — concept formation and navigation.
13:11 The intuitive ability for concept navigation isn’t complete.
Is the concept of understanding a catch all?
14:29 Is it possible to develop AGI that doesn’t understand? Is generality and understanding the same thing?
17:32 Why is understanding (the nature of) understanding important?
Is understanding reductive? Can it be broken down?
19:52 What would be the most basic primitive understanding be?
22:11 If (strong) AI is important, and understanding is required to build (strong) AI, what sorts of things should we be doing to make sense of understanding?
Approaches — engineering, and copy the brain.
24:34 Is common sense the same thing as understanding? How are they different?
26:24 What concepts do we take for granted around the world — which when strong AI comes about will dissolve into illusions, and then tell us how they actually work under the hood?
27:40 Compression and understanding.
29:51 Knowledge, Gettier problems and justified true belief. Is knowledge different from understanding and if so how?
31:07 A hierarchy of intel — data, information, knowledge, understanding, wisdom.
33:37 What is wisdom? Experience can help situate knowledge in a web of understanding — is this wisdom? Is the ostensible appearance of wisdom necessarily wisdom? Think pulp remashings of existing wisdom in the form of trashy self-help literature.
35:38 Is understanding mapping knowledge into a useful framework? Or is it making accurate / novel predictions?
36:00 Is understanding like high resolution carbon copy like models that accurately reflect true nature or a mechanical process?
37:04 Does understanding come in gradients of topologies? Is there degrees or is it just on or off?
38:37 What comes first — understanding or generality?
40:47 Minsky’s ‘Society of Mind’
42:46 Is vitalism alive in well in the AI field? Do people actually think there are ghosts in the machines?
48:15 Anthropomorphism in AI literature.
50:48 Deism — James Gates and error correction in super-symmetry.
52:16 Why are the laws of nature so mathematical? Why is there so much symmetry in physics? Is this confusing the map with the territory?
52:35 The Drake equation, and the concept of the Artilect — does this make Deism plausible? What about the Fermi Paradox?
55:06 Hyperintelligence is tiny — the transcention hypothesis — therefore civs go tiny — an explanation for the fermi paradox.
56:36 Why would *all* civs go tiny? Why not go tall, wide and tiny? What about selection pressures that seem to necessitate cosmic land grabs?
01:01:52 The Great Filter and the The Fermi Paradox.
01:02:14 Is it possible for an AGI to have a deep command of knowledge across a wide variety of topics/categories without understanding being an internal dynamic? Is the turing test good enough to test for understanding? What kinds of behavioral tests could reliably test for understanding? (Of course without the luxury of peering under the hood)
01:03:09 Does AlphaGo understand Go, or DeepBlue understand chess? Revisiting the Chinese Room argument.
01:04:23 More on behavioral tests for AI understanding.
01:06:00 Zombie machines — David Chalmers Zombie argument.
01:07:26 Complex enough algorithms — is there a critical point of complexity beyond which general intelligence likely emerges? Or understanding emerges?
01:08:11 Revisiting behavioral ‘turing’ tests for understanding.
01:13:05 Shape sorters and reverse shape sorters.
01:14:03 Would slightly changing the rules of Go confuse AlphaGo (after it had been trained)? Need for adaptivity — understanding concept boundaries, predicting where they occur, and the ability to mine outwards from these boundaries…
01:15:11 Neural nets and adaptivity.
01:16:41 AlphaGo documentary — worth a watch. Progresses in AI challenges human dignity which is a concern, but the DeepMind and the AlphaGo documentary seemed to be respectful. Can we manage a transition from human labor to full on automation while preserving human dignity?

Filmed in the dandenong ranges in victoria, australia.

Many thanks for watching!

https://youtube.com/watch?v=R0NP5eMY7Q8&feature=share

Quantum algorithms: An algorithm is a sequence of steps that leads to the solution of a problem. In order to execute these steps on a device, one must use specific instruction sets that the device is designed to do so.

Quantum computing introduces different instruction sets that are based on a completely different idea of execution when compared with classical computing. The aim of quantum algorithms is to use quantum effects like superposition and entanglement to get the solution faster.

Source:
Artificial Intelligence vs Artificial General Intelligence: Eric Schmidt Explains the Difference.

https://youtu.be/VFuElWbRuHM

Disclaimer:

Those who are venturing into the architecture of the metaverse, have already asked themselves this question. A playful environment where all formal dreams are possible, where determining aspects for architecture such as solar orientation, ventilation, and climate will no longer be necessary, where – to Louis Kahn’s despair – there is no longer a dynamic of light and shadow, just an open and infinite field. Metaverse is the extension of various technologies, or even some call them a combination of some powerful technologies. These technologies are augmented reality, virtual reality, mixed reality, artificial intelligence, blockchain, and a 3D world.

This technology is still under research. However, the metaverse seems to make a significant difference in the education domain. Also, its feature of connecting students across the world with a single metaverse platform may bring a positive change. But, the metaverse is not only about remote learning. It is much more than that.

Architecture emerged on the construction site, at a time when there was no drawing, only experimentation. Over time, thanks to Brunelleschi and the Florence dome in the 15th century, we witnessed the first detachment from masonry, a social division of labor from which liberal art and mechanical art emerge. This detachment generated different challenges and placed architecture on an oneiric plane, tied to paper. In other words, we don’t build any structures, we design them. Now, six centuries later, it looks like we are getting ready to take another step away from the construction site, abruptly distancing ourselves from engineering and construction.

Wearable tech has seen an explosion of creativity and applications in the last decade; especially with circuit components getting smaller and cheaper, and batteries getting better and better. Whereas taking phone calls on your wrist was impressive just a few years ago, now, you can experiment with deauthentication attacks on WiFi networks just from this watch: the DSTIKE Deauther Watch SE.

Based on the ESP8266 WiFi microcontroller, this watch is the latest generation of a project to give you a wearable interface for pen testing local WiFi networks. The watch only works on 2.4GHz networks, due to the restrictions of the ESP8266. It comes pre-flashed with the latest ESP8266 Deauther firmware, which is an open-source project! The watch supports four main functions: a deauther attack, which disconnects all local 2.4GHz networks; deauther beacon, used for creating fake networks; deauther probe, to confuse any nearby WiFi trackers; and packet monitoring, which lets you display local WiFi traffic. As you can see, there’s a lot to appreciate in this slick and discreet package.


This watch (and its prior iterations) are made and sold by Travis Lin. Much like the seller emphasizes on the product page, this device is meant for educational purposes, and should be only tested on devices and networks you own. But if this has your curiosity piqued, put on your red hat and check out the wearable devices and other security goodies they have for sale!

Brian Cummings, UCI professor of physical medicine & rehabilitation and founding member of the Sue & Bill Gross Stem Cell Research Center, has received a five-year, $2.7 million grant from the California Institute for Regenerative Medicine to establish a training program that supports first-generation and underserved students pursuing careers in public health and regenerative medicine. The Creating Opportunities Through Mentorship and Partnership Across Stem Cell Science program will pair student scholars with faculty mentors. With their tuition covered and a stipend provided during their two years as scholars, the students will learn hands-on lab skills and human cell culture; be introduced to good manufacturing procedures in UCI’s new GMP facility; and earn a certificate in clinical research coordination. “COMPASS provides the opportunity for students to explore a variety of ways in which their education and research skills can be applied toward improving human health through career paths in the public and private sectors. UCI’s COMPASS scholars program will produce a cadre of well-trained individuals who are ready to contribute to the workforce,” said Cummings, who is also the School of Medicine’s associate dean for faculty development. “A parallel objective is to foster greater awareness and appreciation of diversity, equity and inclusion in trainees, mentors and other program participants.” Administered via the Sue & Bill Gross Stem Cell Research Center, the program will train 25 undergraduate and two-year college transfer students.

The MICROSCOPE satellite experiment has tested the equivalence principle with an unprecedented level of precision.

At an early age, we have all been taught one of the most counterintuitive facts about the physical world: two objects of unequal mass dropped in a vacuum will reach the ground simultaneously. Galileo allegedly tested this equivalence principle from the top of the Leaning Tower of Pisa in Italy, and so did the astronaut David Scott by dropping a hammer and a falcon feather at the surface of the Moon in 1971. And yet, we may find these observations disconcerting, as common sense would tell us that a heavier object should fall faster than a lighter one. But gravity is a peculiar interaction. To understand this force—and what it might tell us about other mysteries, such as dark matter and dark energy—we need to test it with ever-increasing precision. The new results by the space-borne MICROSCOPE mission have done just this.