Toggle light / dark theme

The most massive star known by astronomers is truly of gargantuan proportions. Dubbed R136a1, this is the most massive and luminous star ever discovered in the cosmos. Additionally, it belongs to the Large Magellanic Cloud and is one of the hottest stars out there, and it is very, very different than our Sun.

Astronomers have obtained the sharpest image ever of star R136a1, the most massive known star in the Universe, with the 8.1-meter Gemini South telescope in Chile, part of the International Gemini Observatory operated by NSF’s NOIRLab. Researchers at NOIRLab, led by Venu Kalari, challenge our understanding of the most massive stars and suggest their mass may be lower than previously believed.

The formation of the biggest stars – those with 100 times the mass of the Sun – is still a mystery to astronomers. Observing these giants, which normally reside within dust-shrouded star clusters, is challenging. A giant star’s fuel reserves are depleted in less than a million years. Compared with our Sun, which has a lifespan of about 10 billion years, ours is less than halfway through. Individual massive stars in clusters are difficult to distinguish due to their densely packed nature, short lifetimes, and vast astronomical distances.

NASA’s new moon rocket sprang another dangerous fuel leak Saturday, forcing launch controllers to call off their second attempt to send a crew capsule into lunar orbit with test dummies.

The first attempt earlier in the week was also marred by escaping hydrogen, but those leaks were elsewhere on the 322-foot (98-meter) rocket, the most powerful ever built by NASA.

NASA Administrator Bill Nelson said could bump the launch into October.

Scientists have worked out how to use an infrared laser to charge devices at a distance. The system can deliver up to 400 milliwatts of power up to a distance of 30 meters (100 feet). That amount of power is sufficient to charge small sensors and other tech, and with developments, it could be possible to charge mobile devices too.

The work, published in the journal Optics Express, focused on a method called distributed laser charging. They showed that an infrared laser (whose wavelength can’t harm skin or eyes) was shined through a spherical ball lens towards a device with a photovoltaic receiver of 10 by 10 millimeters (0.4 by 0.4 inches).

The receiver is small enough to be attached to many mobile devices and sensors, and the team showed that it was able to convert 400 milliwatts to 85 milliwatts of electrical power. A small but significant result.

Thermoelectric devices convert thermal energy into electricity by generating a voltage from the difference in temperature between the hot and cold parts of a device.

To better understand how the conversion process occurs at the atomic scale, researchers used neutrons to study single crystals of tin sulfide and tin selenide. They measured changes that were dependent on temperature.

The measurements revealed a strong correlation between changes in the structure at certain temperatures and the frequency of atomic vibrations (phonons). This relationship affects how the materials conduct heat.

“We don’t need any energy input, and it bubbles hydrogen like crazy. I’ve never seen anything like it,” said UCSC Professor Scott Oliver, describing a new aluminum-gallium nanoparticle powder that generates H2 when placed in water – even seawater.

Aluminum by itself rapidly oxidizes in water, stripping the O out of H2O and releasing hydrogen as a byproduct. This is a short-lived reaction though, because in most cases the metal quickly attains a microscopically thin coating of aluminum oxide that seals it off and puts an end to the fun.

But chemistry researchers at UC Santa Cruz say they’ve found a cost-effective way to keep the ball rolling. Gallium has long been known to remove the aluminum oxide coating and keep the aluminum in contact with water to continue the reaction, but previous research had found that aluminum-heavy combinations had a limited effect.

Circa 2016


A radically new form of lithium-oxygen batteries avoids many of the problems that have prevented the uptake of what is, in theory, the ultimate transportation battery. If the work can be scaled up, it could mark the end of gasoline-powered cars.

The cost, weight, and insufficient lifespan of batteries represents a major obstacle to electric cars replacing internal combustion engines on our roads. There are two paths to address this: One, like Aesop’s tortoise, involves slow incremental improvements in existing lithium-ion batteries, collectively bringing down the cost and extending the range of electric vehicles.

The other path involves a shift to a radically better technology, of which the one with the greatest potential is lithium-oxygen, also known as lithium-air. The announcement in Nature Energy of a very different way of making lithium-oxygen batteries indicates it is not time to write off the hare in this race.

Linear analysis plays a central role in science and engineering. Even when dealing with nonlinear systems, understanding the linear response is often crucial for gaining insight into the underlying complex dynamics. In recent years, there has been a great interest in studying open systems that exchange energy with a surrounding reservoir. In particular, it has been demonstrated that open systems whose spectra exhibit non-Hermitian singularities called exceptional points can demonstrate a host of intriguing effects with potential applications in building new lasers and sensors.

At an exceptional point, two or modes become exactly identical. To better understand this, let us consider how drums produce sound. The membrane of the drum is fixed along its perimeter but free to vibrate in the middle.

As a result, the membrane can move in different ways, each of which is called a mode and exhibits a different sound frequency. When two different modes oscillate at the same frequency, they are called degenerate. Exceptional points are very peculiar degeneracies in the sense that not only the frequencies of the modes are identical but also the oscillations themselves. These points can exist only in open, non-Hermitian systems with no analog in closed, Hermitian systems.

Orsted.

In its bid to achieve net zero carbon emissions by 2050, the U.K. is banking heavily on wind-generated power. To this effect, it commissioned the Hornsea One project, which was the largest offshore wind farm in the world at the time of achieving fully operational status in 2020. Two years later, the Hornsea 2 project is fully operational and has claimed the bragging rights for being the largest offshore wind farm in the world.

Kyiv will lose nearly two-thirds of its deposits if the Kremlin is successful in annexing Ukrainian territory.

At least $12.4 trillion worth of Ukraine’s essential natural resources, including energy and mineral deposits, are now under Russian control.

“The Kremlin is robbing Ukraine” of its natural resources, the backbone of it’s economy, according to an analysis by SecDev posted by Washington Post on August 10.