Menu

Blog

Archive for the ‘energy’ category: Page 170

Feb 22, 2022

Large content platforms want to contribute to the cost of European digital infrastructure

Posted by in category: energy

New applications in energy, defense and telecommunications could receive a boost after a team from The University of Texas at Austin created a new type of “nanocrystal gel”—a gel composed of tiny nanocrystals each 10,000 times smaller than the width of a human hair that are linked together into an organized network.

Feb 21, 2022

Ethiopia starts generating power at Nile mega-dam

Posted by in category: energy

Feb 21, 2022

Versatile ‘nanocrystal gel’ could enable advances in energy, defense and telecommunications

Posted by in categories: chemistry, energy

New applications in energy, defense and telecommunications could receive a boost after a team from The University of Texas at Austin created a new type of “nanocrystal gel”—a gel composed of tiny nanocrystals each 10,000 times smaller than the width of a human hair that are linked together into an organized network.

The crux of the team’s discovery is that this is easily tunable. That is, it can be switched between two different states by changing the temperature. This means the material can work as an , absorbing different frequencies of light depending on whether it’s in a gelled state or not. So, it could be used, for example, on the outside of buildings to control heating or cooling dynamically. This type of optical filter also has applications for defense, particularly for thermal camouflage.

The gels can be customized for these wide-ranging applications because both the nanocrystals and the molecular linkers that connect them into networks are designer components. Nanocrystals can be chemically tuned to be useful for routing communications through fiber optic networks or keep the temperature of space craft steady on remote planetary bodies. Linkers can be designed to cause gels to switch based on ambient temperature or detection of environmental toxins.

Feb 19, 2022

A Window Into the Future of Wave Energy

Posted by in categories: energy, sustainability

Award Helps Move Cost-Effective, Productive, Robust Wave Energy Design a Step Closer to Commercialization and Widespread Use

In 1974, Stephen Salter, a professor at the University of Edinburgh, sent his “ducks” into the Scottish seas, launching the world’s first major wave energy project. But the ocean’s rough heaves and surges proved too much for his house-sized, floating generators. Like the more recent Pelamis’ P-750 model and Aquamarine’s Oysters, they succumbed to the power they were meant to harness.

Continue reading “A Window Into the Future of Wave Energy” »

Feb 18, 2022

IoT Implementation in Smart Farming

Posted by in categories: energy, food

Electronic components applied to implement IoT based smart farming systems, ranging from processors, sensors, signal conditioning, power management, connectivity, and positioning.


The IoT systems in smart farming have been depicted in six main sections by EET India, which are processors, sensors, signal conditioning, power management, connectivity, and positioning. Common use cases like automatic fertilization, automatic irrigation, crop management, precision farming, and livestock monitoring all can be realized through IoT systems. After sensors detect the environmental phenomena and target objects, the information will be transmitted to controlled processors through wireless connectivity. Then, the processors can collect and analyze these data, or even help farmers with further decision making.

Fig. 1 An IoT system in smart farming (Source: EET India, TECHDesign)

Feb 18, 2022

Quaise Energy intends convert power plants to geothermal

Posted by in category: energy

Quaise Energy, a startup based in Cambridge, Massachusetts, has announced its intentions to revolutionize how conventional power plants produce electricity. They have developed a new type of drilling technology that they claim will allow virtually any power plant to convert to geothermal as a fuel source.

The new technology uses a gyrotron-powered that vaporizes a borehole by emitting millimeter-sized energy waves from the tip of a drill bit. Engineers at Quaise have been working to perfect the technology for the past decade. The energy waves pulverize the rock as the hole is dug, allowing for digging much deeper than conventional drills. The energy waves, notably, are generated on the surface—their frequency is near to that used by microwaves.

Once the hole is excavated, water can be pumped into its depths, where the heat from the Earth will convert it to steam that rises back up out of the hole like a geyser. Also, the well can be used indefinitely to produce electricity using a geothermal source of energy, making it cheaper to produce electricity than conventional methods.

Feb 15, 2022

Einstein’s relativity theory passes strict test based on LHAASO observation

Posted by in categories: energy, physics

Researchers from the Institute of High Energy Physics of the Chinese Academy of Sciences examined the validity of the theory of relativity with the highest accuracy in a study entitled “Exploring Lorentz Invariance Violation from Ultrahigh-Energy γRays Observed by LHAASO,” which was published in the latest issue of Physical Review Letters.

According to Einstein’s of relativity, the fastest speed of matter in the Universe is the speed of light. Whether that limit is breachable can be tested by examining Lorentz breaking or Lorentz invariance violation.

“Using the world’s highest energy gamma rays observed by the Large High Altitude Air-shower Observatory (LHAASO), a large-scale cosmic ray experiment in Daocheng, Sichuan province, China, we tested Lorentz symmetry. The result improves the breaking energy scale of Lorentz symmetry by dozens of times compared with the previous best result. This is the most rigorous test of a Lorentz symmetry breaking form, confirming once again the validity of Einstein’s relativistic space-time symmetry,” said Prof. Bi Xiaojun, one of the paper’s corresponding authors. Prof. BI is a scientist at the Institute of High Energy Physics and a member of the LHAASO collaboration.

Feb 14, 2022

Scientists discover new electrolyte for solid-state lithium-ion batteries

Posted by in category: energy

In the quest for the perfect battery, scientists have two primary goals: create a device that can store a great deal of energy and do it safely. Many batteries contain liquid electrolytes, which are potentially flammable.

As a result, solid-state lithium-ion batteries, which consist of entirely solid components, have become increasingly attractive to scientists because they offer an enticing combination of higher safety and increased energy density—which is how much energy the battery can store for a given volume.

Researchers from the University of Waterloo, Canada, who are members of the Joint Center for Energy Storage Research (JCESR), headquartered at the U.S. Department of Energy’s (DOE) Argonne National Laboratory, have discovered a new solid electrolyte that offers several important advantages.

Feb 14, 2022

A new silicon battery design just beat Tesla’s energy density

Posted by in categories: energy, futurism

Feb 14, 2022

Russia is working on 72-meter sub — 21 knots, low radar signature

Posted by in categories: energy, engineering, military

Russia’s diversified design bureau for marine engineering, Rubin, unveiled a project for a modified version of a submarine that the company is working on.


MOSCOW, ($1=76.79 Russian Rubles) — Russia’s diversified design bureau for marine engineering, Rubin, has unveiled a project for a modified version of the Guardian submarine that the company is working on. Rubin is the greatest designer of Soviet and Russian submarines – 85% of them are the work of the company.

According to preliminary data, the submarine is designed to reach a maximum speed of 21 knots. If it travels at 10 knots, it can travel a maximum of 4,000 miles. Ruby achieves this speed by integrating a more powerful power plant, as well as reducing the resistance to movement in the surface position.

Continue reading “Russia is working on 72-meter sub — 21 knots, low radar signature” »