Toggle light / dark theme

Shell to unload 1,000 retail locations in pivot to EV charging

As part of its energy transition strategy, energy giant Shell plans to shed some of its retail locations, including gasoline stations, to focus more on EV charging sites.

“We are upgrading our retail network, with expanded electric vehicle charging and convenience offers, in response to changing customer needs,” Shell said in its 2024 Energy Transition Strategy report. The company plans to “divest around 500 Shell-owned sites (including joint ventures) a year in 2024 and 2025.” The company’s plans were first reported by Bloomberg News.

The closures will shrink the company’s retail footprint by 2.1%. In 2023, the company operated 47,000 locations.

The End of Nuclear Secrecy? Underground Weapon Tests “Now Detectable With 99% Accuracy”

Thanks to a significant scientific breakthrough in detection methods, conducting secret underground nuclear tests could become obsolete.

A team of Earth scientists and statisticians say they can now tell with 99 percent accuracy if such an explosion has taken place. This is up from 82 percent and is based on a dataset of known tests in the US, according to the new study published in Geophysical Journal International. It has previously been tricky to differentiate between nuclear explosions and other seismic sources, such as naturally-occurring earthquakes or man-made noise above ground.

“The explosion goes off and you have all this energy that radiates out, which can be measured on seismometers,” said lead author Dr. Mark Hoggard, of The Australian National University (ANU). “So, the science problem becomes how do we tell the difference between that and a naturally-occurring earthquake?”

Scientists Develop Groundbreaking Sensor That Can Wirelessly Detect Chemical Warfare Agents

Researchers have developed a revolutionary sensor capable of detecting chemical warfare agents without wires, representing a major advancement in technology for public safety. This innovative device, capable of identifying substances like dimethyl methylphosphonate (DMMP), offers a new level of efficiency and reliability in monitoring and responding to chemical threats, without the need for direct power sources or physical connections.

The urgent need for advanced detection of chemical warfare agents (CWAs) to ensure global security has led to the development of a novel gas sensor. This sensor is distinguished by its rapid response, high sensitivity, and compact size, crucial for the early detection of CWAs. Accurate detection and monitoring of CWAs are vital for effective defense operations, both military and civilian. Due to the hazardous nature of CWAs, research is typically limited to authorized laboratories using simulants that mimic CWAs’ chemical structure without their toxic effects.

Scientists proved the fundamental limits of electromagnetic energy absorption

Until recently, researchers were unsure of the minimum thickness of a transparent substance required to take in a given quantity of light.

Konstantin N. Rozanov of the Institute for Theoretical and Applied Electrodynamics in Russia discovered more than two decades ago the amount of light that a gadget might absorb at various wavelengths if one side of it was coated in metal. This metal establishes a barrier where light is absorbed or bounced back, simplifying the mathematical solution.

MIT Unveils the Dance of Protons: Pioneering Energy’s New Era

New insights into how proton-coupled electron transfers occur at an electrode could help researchers design more efficient fuel cells and electrolyzers.

A key chemical reaction — in which the movement of protons between the surface of an electrode and an electrolyte drives an electric current — is a critical step in many energy technologies, including fuel cells and the electrolyzers used to produce hydrogen gas.

For the first time, MIT chemists have mapped out in detail how these proton-coupled electron transfers happen at an electrode surface. Their results could help researchers design more efficient fuel cells, batteries, or other energy technologies.

Unlocking the Future of Microelectronics With Argonne’s Redox Gating Breakthrough

Argonne researchers pioneer “redox gating” — a new way to precisely modulate electron flow.

Breakthrough could help lead to the development of new low-power semiconductors or quantum devices.

As the integrated circuits that power our electronic devices get more powerful, they are also getting smaller. This trend of microelectronics has only accelerated in recent years as scientists try to fit increasingly more semiconducting components on a chip.