Menu

Blog

Archive for the ‘engineering’ category: Page 34

Nov 10, 2023

How Einstein’s Daydream of Light Created Relativity

Posted by in categories: education, engineering, information science, physics, transportation

Einstein’s fascination with light, considered quirky at the time, would lead him down the path to a brand new theory of physics.

Living half a century before Einstein, a Scotsman, James Clerk Maxwell, revealed a powerful unification and universalization of nature, taking the disparate sciences of electricity and magnetism and merging them into one communion. It was a titanic tour-de-force that compressed decades of tangled experimental results and hazy theoretical insights into a tidy set of four equations that govern a wealth of phenomena. And through Maxwell’s efforts was born a second great force of nature, electromagnetism, which describes, again in a mere four equations, everything from static shocks, the invisible power of magnets, the flow of electricity, and even radiation – that is, light – itself.

At the time Einstein’s fascination with electromagnetism was considered unfashionable. While electromagnetism is now a cornerstone of every young physicist’s education, in the early 20th century it was seen as nothing more than an interesting bit of theoretical physics, but really something that those more aligned in engineering should study deeply. Though Einstein was no engineer, as a youth his mind burned with a simple thought experiment: what would happen if you could ride a bicycle so quickly that you raced beside a beam of light? What would the light look like from the privileged perspective?

Nov 10, 2023

Soap inspires scientists to create longer-lasting batteries

Posted by in category: engineering

The process of washing has inspired a new method for engineering efficient lithium-metal batteries.


Vi73777/iStock.

Scientists have long been trying to successfully switch from lithium-ion to lithium-metal batteries. However, there is one issue that has been causing a delay in this transition: traditional electrolytes do not perform well in metal-based batteries.

Continue reading “Soap inspires scientists to create longer-lasting batteries” »

Nov 7, 2023

Lasers allow fine-tuning of 3D-printed metals without “heating & beating”

Posted by in categories: 3D printing, engineering

A team of researchers led by the University of Cambridge has developed a new technique that uses high-energy lasers to fine tune the properties of 3D-printed metal without compromising the complex shapes it forms.

Additive or 3D printing is proving an increasingly powerful tool for engineering and manufacturing, but it’s far from a panacea. In fact, it often has some major drawbacks that require new approaches to overcome.

3D printing metal usually involves a machine that lays down thin layers of metal alloy in the form of a fine powder. This layer is then melted or sintered using a laser or electron beam guided by a digital model, then another layer is added. When the printing is complete, the excess powder is swept away, revealing the final product.

Nov 7, 2023

Unlocking Quantum Secrets — Simulations Reveal the Atomic-Scale Story of Qubits

Posted by in categories: biotech/medical, chemistry, computing, engineering, quantum physics

Researchers at the University of Chicago’s Pritzker School of Molecular Engineering, led by Giulia Galli, have conducted a computational study predicting the conditions necessary to create specific spin defects in silicon carbide. These findings, detailed in a paper published in Nature Communications

<em> Nature Communications </em> is a peer-reviewed, open-access, multidisciplinary, scientific journal published by Nature Portfolio. It covers the natural sciences, including physics, biology, chemistry, medicine, and earth sciences. It began publishing in 2010 and has editorial offices in London, Berlin, New York City, and Shanghai.

Nov 6, 2023

MIT Physicists Transform Pencil Lead Into Electronic “Gold”

Posted by in categories: education, engineering, physics

Isolate thin flakes that can be tuned to exhibit three important properties.

MIT is an acronym for the Massachusetts Institute of Technology. It is a prestigious private research university in Cambridge, Massachusetts that was founded in 1861. It is organized into five Schools: architecture and planning; engineering; humanities, arts, and social sciences; management; and science. MIT’s impact includes many scientific breakthroughs and technological advances. Their stated goal is to make a better world through education, research, and innovation.

Nov 3, 2023

Vacuum in optical cavity can change material’s magnetic state without laser excitation

Posted by in categories: computing, engineering, physics

Researchers in Germany and the U.S. have produced the first theoretical demonstration that the magnetic state of an atomically thin material, α-RuCl3, can be controlled solely by placing it into an optical cavity. Crucially, the cavity vacuum fluctuations alone are sufficient to change the material’s magnetic order from a zigzag antiferromagnet into a ferromagnet. The team’s work has been published in npj Computational Materials.

A recent theme in material physics research has been the use of intense laser light to modify the properties of magnetic materials. By carefully engineering the laser light’s properties, researchers have been able to drastically modify the and optical properties of different materials.

However, this requires continuous stimulation by high-intensity lasers and is associated with some practical problems, mainly that it is difficult to stop the material from heating up. Researchers are therefore looking for ways to gain similar control over materials using light, but without employing intense lasers.

Nov 3, 2023

SpaceRake wins $1.8 million in SDA funding for optical communications terminals

Posted by in categories: business, engineering, government, satellites

SAN FRANCISCO – The Space Development Agency awarded SpaceRake, a Cambridge, Massachusetts startup, $1.8 million to develop miniature laser communications terminals.

It was the first government contract for SpaceRake, a firm founded in 2021 by Kerri Cahoy, the Massachusetts Institute of Technology Space Telecommunications, Astronomy and Radiation Laboratory director with a Ph.D. in electrical engineering, and Jeremy Wertheimer, former Google vice president engineering with a Ph.D. in artificial intelligence.

Under the two-year direct-to-Phase 2 Small Business Innovation Research award announced Nov. 1, SpaceRake will develop terminals to enable satellites as small as cubesats to transfer data through laser links with the Transport Layer, a global communications network in low Earth orbit being established by SDA, a U.S. Space Force organization.

Nov 3, 2023

“Considered Impossible Until Now” — Scientists Develop Micro Heat Engine That Challenges the Carnot Limit

Posted by in categories: biotech/medical, chemistry, engineering

Designing a heat engine capable of producing maximum power while maintaining maximum efficiency has long been a significant challenge in physics and engineering. Practical heat engines are constrained by a theoretical limit to their efficiency, known as the Carnot limit, which sets a cap on how much heat can be converted to useful work.

In a breakthrough, researchers at the Indian Institute of Science (IISc) and Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) have devised a novel “micro heat engine” that has overcome this limitation at the lab scale. The study was recently published in the journal Nature Communications

<em> Nature Communications </em> is a peer-reviewed, open-access, multidisciplinary, scientific journal published by Nature Portfolio. It covers the natural sciences, including physics, biology, chemistry, medicine, and earth sciences. It began publishing in 2010 and has editorial offices in London, Berlin, New York City, and Shanghai.

Nov 2, 2023

Engineering Molecular Transitions for Symmetry-Violation Tests

Posted by in category: engineering

Researchers have engineered ultracold molecular transitions ideally suited for probing beyond-standard-model effects of symmetry violations.

Nov 2, 2023

Researchers develop approach that could help supercharge T-cell therapies against solid tumors

Posted by in categories: biotech/medical, engineering, health

Researchers at the National Institutes of Health have developed a way to potentially increase the effectiveness of T cell–based immunotherapy treatments, such as CAR T-cell therapy, against solid tumors. T cells are specialized white blood cells of the immune system that eliminate infected or abnormal cells. In animal studies, the enhanced T-cell therapies were effective against cervical cancer and neuroblastoma, a common solid tumor in children. The findings, by scientists at the National Cancer Institute (NCI), part of NIH, appear in Clinical Cancer Research.

CAR T-cell therapy is a form of cellular immunotherapy that involves engineering T cells in the laboratory so they can specifically target and kill tumors. CAR T-cell therapy has been successful in treating blood cancers, but it hasn’t worked well for solid tumors. To improve the effectiveness of T-cell therapy against solid tumors, researchers at NCI’s Center for Cancer Research engineered T cells (CAR T cells and another form of cellular immunotherapy called TCR T cells) to carry cytokines, which are proteins that can boost T-cell function.

In laboratory studies, CAR and TCR T cells modified to express the cytokines IL-15 and IL-21 on their surface killed far more than T cells carrying just one of these cytokines or neither of them. Previous research has found that treating patients with large amounts of cytokines caused severe, potentially fatal, side effects. The new approach aims to deliver this cytokine boost in a much more targeted way.

Page 34 of 255First3132333435363738Last