Toggle light / dark theme

Usually, the two characterizations of a material are mutually exclusive: something is either stiff, or it can absorb vibrations well—but rarely both. However, if we could make materials that are both stiff and good at absorbing vibrations, there would be a whole host of potential applications, from design at the nanoscale to aerospace engineering.

A team of researchers from the University of Amsterdam has now found a way to create that are stiff, but still good at absorbing vibrations—and equally importantly, that can be kept very light-weight.

David Dykstra, lead author of the study published in the journal Advanced Materials, explains, “We discovered that the trick was to use materials that buckle, like thin metal sheets. When put together in a clever way, constructions made out of such buckled sheets become great absorbers of vibrations—but at the same time, they preserve a lot of the stiffness of the material they are made out of. Moreover, the sheets do not need to be very thick, and so the material can be kept relatively light.”

Is Senior Vice President of the Energy Systems business unit of Westinghouse Electric Company, which is the nuclear power unit of.
Westinghouse, where her core focus is in leading the team developing and.
deploying their AP300 Small Modular Nuclear Reactor (https://www.westinghousenuclear.com/Portals/0/about-2020/lea…UL22.pdf).

Dr. Baranwal recently served Chief Technology Officer of the organization, where she led the company’s global research and development investments, spearheading their technology strategy to advance the company’s nuclear innovation, and drove next-generation solutions for existing and new markets.

Dr. Baranwal’s appointment to this CTO role in 2022 marked a return to Westinghouse where she worked for nearly a decade in leadership positions in the Global Technology Development, Fuel Engineering, and Product Engineering groups.

Prior to rejoining Westinghouse, Dr. Baranwal served as Assistant Secretary for the U.S. Department of Energy’s (DOE) Office of Nuclear Energy where she directed the R&D portfolio across current and advanced nuclear technologies while collaborating across nuclear utilities, national labs, reactor developers, academia and government stakeholders. She has also held senior leadership roles with the Idaho National Laboratory as Director of the Gateway for Accelerated Innovation in Nuclear (GAIN), and most recently was the Chief Nuclear Officer and Vice President of Nuclear for the Electric Power Research Institute (EPRI).

Is the Quantum for Bio Program Director, at Wellcome Leap (https://wellcomeleap.org/our-team/elicakyoseva/), a $40M +$10M program focused on identifying, developing, and demonstrating biology and healthcare applications that will benefit from the quantum computers expected to emerge in the next 3–5 years.

Wellcome Leap was established with $300 million in initial funding from the Wellcome Trust, the UK charitable foundation, to accelerate discovery and innovation for the benefit of human health, focusing on build bold, unconventional programs and fund them at scale—specifically programs that target global human health challenges, with the goal of achieving breakthrough scientific and technological solutions.

Dr. Kyoseva completed her Ph.D. in Quantum Optics and Information, at Sofia University in Bulgaria, and then moved to the Center for Quantum Technologies in Singapore as a postdoc. Three years later, she established her own research group in Quantum Engineering at the Singapore University of Tech & Design and subsequently spent a year at MIT (Cambridge, USA) as a Research Fellow in the Nuclear Science and Engineering Department doing research on quantum control and engineering.

In 2016, Dr. Kyoseva was awarded a Marie Curie fellowship for research excellence by the European Commission with which she relocated to Tel Aviv, Israel and continued her research in robust control methods for Quantum Computing at Tel Aviv University. Since the beginning of 2020 she served as an Entrepreneur in Residence and Advisor at a venture capital firm and was instrumental for their investments in quantum computing startups. In September 2020, she took a senior role with Boehringer Ingelheim to develop applications of quantum algorithms to the drug discovery process working on the cutting edge of applied quantum computing technologies to improve the lives of both humans and animals.

In 2021, lanthanide-doped nanoparticles made waves—or rather, an avalanche—when Changwan Lee, then a Ph.D. student in Jim Schuck’s lab at Columbia Engineering, set off an extreme light-producing chain reaction from ultrasmall crystals developed at the Molecular Foundry at Berkeley Lab. Those same crystals are back again with a blink that can now be deliberately and indefinitely controlled.

“We’ve found the first fully photostable, fully photoswitchable nanoparticle—a holy grail of nanoprobe design,” said Schuck, associate professor of mechanical engineering.

This unique material was synthesized in the laboratories of Emory Chan and Bruce Cohen at the Molecular Foundry, Lawrence Berkeley National Laboratory as well as in a national lab in South Korea. The research team also included Yung Doug Suh’s lab at Ulsan National Institute of Science and Technology (UNIST).

A perovskite-based device that combines aspects of electronics and photonics may open doors to new kinds of computer chips or quantum qubits.

MIT

MIT is an acronym for the Massachusetts Institute of Technology. It is a prestigious private research university in Cambridge, Massachusetts that was founded in 1861. It is organized into five Schools: architecture and planning; engineering; humanities, arts, and social sciences; management; and science. MIT’s impact includes many scientific breakthroughs and technological advances. Their stated goal is to make a better world through education, research, and innovation.

The quest to develop hydrogen as a clean energy source that could curb our dependence on fossil fuels may lead to an unexpected place—coal. A team of Penn State scientists found that coal may represent a potential way to store hydrogen gas, much like batteries store energy for future use, addressing a major hurdle in developing a clean energy supply chain.

“We found that can be this geological hydrogen battery,” said Shimin Liu, associate professor of energy and mineral engineering at Penn State. “You could inject and store the hydrogen energy and have it there when you need to use it.”

Hydrogen is a clean burning fuel and shows promise for use in the most energy intensive sectors of our economy—transportation, electricity generation and manufacturing. But much work remains to build a and make it an affordable and reliable energy source, the scientists said.

The psychedelic substances 5-MeO-DMT causes a long-lasting increase in the number of tiny protrusions called dendritic spines in the brain, according to new research published in Neuropsychopharmacology. The study, which was conducted on mice, sheds light on the behavioral and neural mechanisms of 5-MeO-DMT.

Serotonergic psychedelics (such as psilocybin and LSD) have shown promise as potential therapeutics for mental illnesses like depression and anxiety. Short-acting compounds are particularly interesting because they require less dosing time, which could improve patient access to treatment. In humans, 5-MeO-DMT produces a short-lasting experience due to its rapid breakdown in the body.

“My lab started research on psychiatric drugs like ketamine and psychedelics about 10 years ago. We were motivated by how basic science and clinical research can together powerfully move a drug forward to become medicine. Specifically I believe there is a lot of potential for psychedelics as therapeutics, and that drives our interest in this topic,” said study author Alex Kwan (@kwanalexc), an associate professor in the Meinig School of Biomedical Engineering at Cornell University.

A team of engineers at the University of Massachusetts Amherst has recently shown that nearly any material can be turned into a device that continuously harvests electricity from humidity in the air. The secret lies in being able to pepper the material with nanopores less than 100 nanometers in diameter. The research appeared in the journal Advanced Materials.

“This is very exciting,” says Xiaomeng Liu, a graduate student in electrical and computer engineering in UMass Amherst’s College of Engineering and the paper’s lead author. “We are opening up a wide door for harvesting clean from thin air.”

“The air contains an enormous amount of electricity,” says Jun Yao, assistant professor of electrical and computer engineering in the College of Engineering at UMass Amherst, and the paper’s senior author. “Think of a cloud, which is nothing more than a mass of water droplets. Each of those droplets contains a charge, and when conditions are right, the cloud can produce a lightning bolt—but we don’t know how to reliably capture electricity from lightning. What we’ve done is to create a human-built, small-scale cloud that produces electricity for us predictably and continuously so that we can harvest it.”

After three years of upgrading and waiting, due in part to the coronavirus pandemic, the Laser Interferometer Gravitational-wave Observatory has officially resumed its hunt for the signatures of crashing black holes and neutron stars.

“Our LIGO teams have worked through hardship during the past two-plus years to be ready for this moment, and we are indeed ready,” Caltech physicist Albert Lazzarini, the deputy director of the LIGO Laboratory, said in a news release.

Lazzarini said the engineering tests leading up to today’s official start of Observing Run 4, or O4, have already revealed a number of candidate events that have been shared with the astronomical community.