Toggle light / dark theme

Turtles migrate thousands of miles out in the open ocean, charting epic courses in search of food, mates, and nesting grounds. Exactly how they find where they’re going has long puzzled scientists who suspected magnetic fields were involved, but were unsure of the exact mechanism through which turtles were sensing it.

We’ve since learned that turtles appear to recognize magnetic signatures of locations, such as the beach on which they hatched where females will later return to lay their own eggs. We know the magnetosphere is in constant flux, and turtle nesting sites have been found to shift in tandem, so how is it that they’re able to make sense of this invisible force?

Some answers to this question were revealed in a study that looked at the way snapping turtles can tell north from south, in a phenomenon known as spontaneous magnetic alignment. It was once thought to be a rare trait in the animal kingdom, but as Professor John Phillips from the Department of Biological Sciences at Virginia Tech told IFLScience, this is no longer the case.

It’s one of the mysteries of nature: How does the axolotl, a small salamander, boast a superhero-like ability to regrow nearly any part of its body? For years, scientists have studied the amazing regenerative properties of the axolotl to inform wound healing in humans.

Now, Stanford Medicine researchers have made a leap forward in understanding what sets the axolotl apart from other animals. Axolotls, they discovered, have an ultra-sensitive version of mTOR, a molecule that acts as an on-off switch for protein production. And, like survivalists who fill their basements with non-perishable food for hard times, axolotl cells stockpile messenger RNA molecules, which contain genetic instructions for producing proteins. The combination of an easily activated mTOR molecule and a repository of ready-to-use mRNAs means that after an injury, axolotl cells can quickly produce the proteins needed for tissue regeneration.

The new findings were published July 26 in Nature.

Canadian architecture studio Atelier l’Abri has built a series of A-Frame buildings for the Farouche Tremblant agrotourism site in Québec’s Mon-Tremblant National Park, which were designed to “recede in the landscape”.

Intending to celebrate and showcase the surrounding untamed woodlands, Atelier l’Abri created a cafe, farm and four rental micro–cabins that act as a basecamp for visitors wanting to explore the nearby Devil’s River and its valley.

Sitting among the wild terrain, the four small rental cabins have steep-pitched roofs clad in cedar shingles that extend to the ground to form sloping walls.

Researchers revisit a neglected decay mode with implications for fundamental physics and for dating some of the oldest rocks on Earth and in the Solar System.

With a half-life of 1.25 billion years, potassium-40 does not decay often, but its decays have a big impact. As a relatively common isotope (0.012% of all potassium) of a very common metal (2.4% by mass of Earth’s crust), potassium-40 is one of the primary sources of radioactivity we encounter in daily life. Its decays are the primary source of argon-40, which makes up almost 1% of the atmosphere, and the copious amount of heat released from these decays threw off early estimates of the age of Earth made by Lord Kelvin. Potassium-40 is largely responsible for the meager radioactivity in our food (such as bananas), and it is a significant source of noise in some highly sensitive particle physics detectors. This isotope and its decay products are also useful tools in dating rocks and geological processes that go back to the earliest parts of Earth history. And yet some long-standing uncertainty surrounds these well-studied decays.

Let’s look at some examples of this software-defined momentum at the edge. In manufacturing, AI enables weld quality detection in real time on factory floors, improving production yields. In agriculture, farmers can use AI-driven systems to move from focusing on entire crops to looking at individual plants in a field to determine where to fertilize, irrigate or weed. Healthcare is transforming at every level—from the granularity of tracking nerve structures for anesthesia during surgery to the scale and scope of securing patient privacy and data across healthcare networks. An intelligent, software-defined edge aids in delivering resilience for evolving business needs.

AI tools and platforms are now widely available, allowing businesses to harness their power to build solutions faster and gain a competitive edge. This accessibility is crucial for scaling their usefulness, as it shifts solutions from being built solely by data scientists and software engineers to being used by domain experts with less coding experience. With simplified AI model toolkits and an open development platform, these users can stitch together their own solutions and deploy them anywhere.

Let’s take the example of a quick service restaurant (QSR). QSRs could improve their operations by monitoring orders and ingredient levels, then dynamically resupplying their inventories. Lowering barriers to AI means businesses like a QSR can tap into automation and intelligent software solutions on any device, such as a point-of-service system, laptop or mobile device. Customers are happier, food waste is reduced and process efficiencies help QSRs maintain operations even in our current labor shortage.

Experimental studies of microbial evolution have largely focused on monocultures of model organisms, but most microbes live in communities where interactions with other species may impact rates and modes of evolution. Using the cheese rind model microbial community, we determined how species interactions shape the evolution of the widespread food-and animal-associated bacterium Staphylococcus xylosus. We evolved S. xylosus for 450 generations alone or in co-culture with one of three microbes: the yeast Debaryomyces hansenii, the bacterium Brevibacterium aurantiacum, and the mold Penicillium solitum. We used the frequency of colony morphology mutants (pigment and colony texture phenotypes) and whole-genome sequencing of isolates to quantify phenotypic and genomic evolution. The yeast D. hansenii strongly promoted diversification of S. xylosus.

Science: In my opinion the main cause of aging is the accumulation of mutations in DNA 🧬 more than telomere size reduction or “toxin’s”. But the control of these “toxins” together with drug’s that simulate the restriction of calories and the transfusion of blood from young people to old people. And future drugs to make the telomeres grow again.

These four treatments together maybe can promote life extension. I am also enthusiastic in regenerative treatment with stem cells and “replace” old organs by new one’s growing in lab from stem cells. However I believe that immortality only when you make the enzymes “fix” in 100% the mutations caused by radicals.


High levels of toxic chemicals in the body, such as formaldehyde, which is best known as an embalming agent, have recently been found to be naturally made by cells and also to cause ageing.

Leading scientists from Cornell University, the University of Oxford, the University of Cambridge and Cancer Research UK are trying to understand what causes the body to overproduce formaldehyde.

Imagine returning home from your evening walk or gym to the aroma of freshly cooked kadhai paneer or chicken curry, which instantly reminds you of home. Now, what if you were to know that it was no human that lovingly prepared this piping hot and delicious meal, but rather, a machine?

From booking cabs to ordering food right at your doorstep, technology makes human lives easy. So it’s about time it saves humans from having to cook after a long tiring day at work, or at times when you’re just not in the mood to enter the kitchen.

The NOSH device, developed by the Euphotic Labs, was conceived by Yatin Varachhia, co-founder of the Bengaluru-based startup. The 34-year-old says the inspiration to build a device stemmed from his struggle of having good food.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Epigenetic Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1