Toggle light / dark theme

Who gets ownership of useful genetic data?

Cow D lived on a dairy farm in New Zealand. The animal looked like the typical black-and-white cow farmers raise for milk, except for one thing: Researchers had outfitted Cow D with an artificial fistula—a hole offering them a way to reach the microbes inhabiting the animal’s bathtub-size stomach. But it’s what happened next that offers a porthole into the global debate over the use of genetic data.

In the spring of 2009, Samantha Noel, then a doctoral researcher at Massey University in Palmerston North, New Zealand, reached into Cow D’s rumen and plucked out a strain of Lachnospiraceae bacterium, later dubbed ND2006. Another team of geneticists sequenced the microbe’s complete set of genes, or genome, and uploaded the information, which was then shared with GenBank, a public database run by the US National Institutes of Health. If genes are the book of life, then this process was like adding a digital copy to an online library. In policy circles, these lines of code go by another name: digital sequence information, or DSI.

James Giordano ASO

The future of warfare starts in your mind. Understand how Neuroscience, Technology/AI and the OODA loop affects your flow. The world is changing, and cognitive warfare is at the forefront. In our latest podcast episode, we sit down with James Giordano, PhD, a Navy veteran and an expert in neurocognitive science, to delve into the world of cognitive warfare.
Stay in the Loop: https://www.aglx.com/newsletter-signup-north-america.
From the impact of emotions on decision-making to the integration of artificial intelligence and human cognition, this episode challenges your perspective on the battlefield. Join us as we explore the ethical implications of genetic modifications, the transformative effects of psychedelics, and the complexities of data usage in the digital age. Get ready to reimagine the relationship between technology, culture, and language. Don’t miss out on this opportunity to gain valuable insights from our thought-provoking conversation with Dr. Giordano. Tune in now to stay ahead of the curve on the evolving landscape of warfare!

00:00 — Understanding the OODA loop: A Neuroscience Perspective.
09:11 — Exploring Fifth Generation Warfare and Liminal Warfare.
16:06 — The Long Game: China’s Strategic Plan.
22:19 — Understanding Cognitive Warfare and Human-Machine Teaming.
25:52 — The Evolution of Human-Machine Teaming.
29:11 — Human Involvement in AI Decision Making.
36:01 — The Ethics of Paternalistic AI Systems.
40:43 — Technology’s Impact on Cognitive Engagement.
45:13 — Exploring Technologies for Human Performance Enhancement.
55:59 — Diving Into Attacking Mode and Ethics.
56:24 — Hacking the Human Genome.
59:37 — Epigenetic Modification and Phenotypic Shift.
1:04:54 — The Psychedelic Revolution.
1:11:18 — Revisiting Alcohol and Caffeine: Benefits and Burdens.
1:19:18 — Impact of Technology on Cognitive Capacity.
1:23:33 — Information Overload and Burdens.
1:27:02 — Ownership and Security of Personal Data.
1:31:56 — Identifying Predispositional Traits.
1:33:49 — Data Manipulation and Biometrics.
1:40:13 — Cultural Impact of Technology.
1:48:55 — The Role of Education in Integrating Science, Technology, Ethics, and Policy.
1:54:30 — Major Threats and Concerns in Today’s World.

Unraveling the brain’s hidden motor modules

Vertical columns How the Brain Maps Jaw Movements: A Hidden Architecture of Motion.

Our brains contain intricate maps that guide every voluntary movement we make, from reaching out to grab a cup to the delicate motions involved in speaking or chewing. But how exactly are these maps organized, and what role do different types of brain cells play in shaping them?

A new study dives deep into the orofacial motor maps—the brain’s blueprint for controlling jaw movements—revealing a surprising level of organization. Researchers used optogenetics, a technique that activates specific neurons with light, to map out how different classes of excitatory neurons contribute to jaw motion in mice. What they found was remarkable: rather than a single unified map, the motor cortex is divided into distinct, genetically defined modules, each governing jaw movement from different brain regions, including sensory, motor, and premotor areas.

These modules don’t act in isolation. When one was stimulated, activity rippled across the brain, converging in the primary motor cortex, the region that directly controls movement. What’s more, when the mice learned new motor skills—such as refining their licking motion—some of these modules expanded, adapting to support the learned behavior.

This research suggests that voluntary movement isn’t just dictated by a single command center. Instead, a network of specialized cell groups collaborates across different parts of the brain, dynamically adjusting as we learn new motor skills. Understanding this fine-tuned motor map could have implications for treating movement disorders or even advancing brain-computer interfaces in the future.


Scientists have identified previously unknown neural modules in the brain that control movement and adapt during skill learning. Their findings challenge long-held ideas about how the brain organizes movement.

Scientists Capture First-Ever Images of Cancer’s Covert DNA Repair Strategy

A new structural blueprint paves the way for improved targeting of cancer cells, particularly those with BRCA1 and BRCA2 mutations. DNA repair proteins function as the body’s molecular editors, continuously identifying and correcting damage to our genetic code. A longstanding challenge in cancer research has been understanding how cancer cells exploit one such protein—polymerase theta (Pol-theta)—to support their survival. Now, scientists at Scripps Research have captured the first high-resolution images of Pol-theta in action, shedding light on its role in cancer development.

Inside the scientific quest to reverse human aging

Superlongevity via epigenetic reprogramming. 🏆

Life Biosciences:

“If the FDA approves its application, the company will repeat the methods from the mouse and monkey experiments, Rosenzweig-Lipson said. Scientists will inject volunteers’ eyes with Yamanaka factors that can be turned off or on with the antibiotic doxycycline, Rosenzweig-Lipson said. The hope is that the cells in people’s damaged optic nerves will grow more youthful at an epigenetic level, and their vision will improve.”


Can reprogramming our genes make us young again? A breakthrough in longevity research may be nearing its first human trials.

The secret of how Greenland sharks can live for centuries without getting cancer

The eye protein rhodopsin of the Greenland shark was found to have amino acid variations that made them more adept at processing blue-light wavelengths – a feature that is advantageous when living in the dim deep ocean waters.

“These genomic analyses offer new insights into the molecular basis of the exceptional longevity of the Greenland shark and highlight potential genetic mechanisms that could inform future research into longevity,” scientists wrote in the study.

‘Jumping gene’ caught in the act: Advanced imaging provides new insights into retrotransposons

An arms race is unfolding in our cells: Transposons, also known as jumping genes or mobile genetic elements as they can replicate and reinsert themselves in the genome, threaten the cell’s genome integrity by triggering DNA rearrangements and causing mutations. Host cells, in turn, protect their genome using intricate defense mechanisms that stop transposons from jumping.

Now, for the first time, a retrotransposon has been caught in action inside a cell: Refining cryo-Electron Tomography (cryo-ET) techniques, scientists imaged the retrotransposon copia in the egg chambers of the fruitfly Drosophila melanogaster at sub-nanometer resolution. The paper is published in the journal Cell.

Among the international team of scientists achieving this detailed visualization are three scientists with Vienna BioCenter ties: Sven Klumpe, currently in the laboratory of Jürgen Plitzko at the Max Planck Institute of Biochemistry in Martinsried, will join IMBA and IMP to build a group as a Joint Fellow; Julius Brennecke, a Senior Group Leader at IMBA, the Institute of Molecular Biotechnology of the Austrian Academy of Sciences; and Kirsten Senti, staff scientist in the Brennecke group. Also involved in this collaboration is the group of Martin Beck at the Max Planck Institute of Biophysics in Frankfurt.

The Most Important Living Scientist — Dr. Michael Levin

Dr. Michael Levin’s groundbreaking research redefines intelligence, agency, and selfhood, showing that it exists not just in brains but across all levels of biological systems—cells, organs, and entire organisms. Through his concept of the “morphogenetic code,” Levin reveals that bioelectric signals, not just DNA, guide cellular organization and behavior, enabling profound regenerative breakthroughs like limb regrowth and functional organ creation. His work extends into philosophy, reshaping how we view alien life, selfhood, and even the nature of existence by framing life as an emergent property of interconnected intelligences. Levin envisions tools like an “anatomical compiler” to revolutionize medicine and challenges us to rethink life, intelligence, and the cosmos, solidifying his place as one of the most important living scientists.

Deep Thinkers, Check This: https://www.skool.com/yoda/about.

Biological Age, Age At Menopause, And Longevity (4 Studies)

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

Scientists Just Discovered an RNA That Repairs DNA Damage — And It’s a Game-Changer

Genome Instability and Disease Risk

Every time a cell divides, its DNA is at risk of damage. To complete division, the cell must copy its entire genetic code — billions of letters long — which can lead to occasional errors. But cell division isn’t the only threat. Over time, exposure to factors like sunlight, alcohol, and cigarette smoke can also harm DNA, increasing the risk of cancer and other diseases.

Fortunately, cells have built-in repair systems to counteract this damage. This process, known as the DNA damage response (DDR), activates specific signaling pathways that detect and fix errors. These mechanisms help maintain genetic stability and ensure the cell’s survival.