Toggle light / dark theme

Minimally invasive cellular-level target-specific neuromodulation is needed to decipher brain function and neural circuitry. Here nano-magnetogenetics using magnetic force actuating nanoparticles has been reported, enabling wireless and remote stimulation of targeted deep brain neurons in freely behaving animals.

Teleology the return of Aristotle?


The scientific story of who we are is a reductionist, gene-centric model that forfeits natural phenomena like purpose due to its association with intelligent design and a transcendent, intelligent designer. Noble is neutral on religious matters. Yet he sees compelling evidence that purpose may be fundamental to life. He’s determined to debunk the current scientific paradigm and replace the elevated importance of genes with something much more controversial. His efforts have enraged many of his peers but gained support from the next generation of origins-of-life researchers working to topple the reign of gene-centrism. If successful, the shift could not only transform how we classify, study and treat disease, but what it means to be alive.

One of the earliest biomedical computer programmers, Noble created the first model for a working human heart in 1960 on a vacuum tube computer. The project led to his discovery that heartbeats are emergent properties—new phenomena—arising from feedback loops, transforming our understanding of heart function and underpin treatments for heart conditions that we use today. His research on the heart’s pacemaker demonstrates a prioritization of the organism as a whole over its genes alone. “Several genes could individually be knocked out but the process continues,” says Noble. These genes are responsible for heart rhythm, yet other mechanisms can take over to get the job done.

In the 1960s, Noble served as the dissertation examiner for the then-unknown Richard Dawkins—a prominent figure in the New Atheism movement—would go on to author the 1976 classic The Selfish Gene that popularized the gene-centric theory of evolution. Gene-centrism says evolution acts on genes, not individual organisms. We are merely vessels for our genes that are driving evolution by Darwinian natural selection. Noble’s analysis suggests that evolution acts on the organism as a whole, with the organism harnessing randomness and variation to create and heal itself—on purpose. In this re-evaluation, Noble believes that purpose, creativity, and innovation are fundamental to evolution. He argues that we experience these processes as drives, but they are not purely subjective. They also progress non-consciously in other parts of our body. These natural processes harness randomness and unpredictability—stochasticity—to survive, make decisions, and thrive. “Stochasticity is the center of creativity in organisms,” says Noble.

The Nazca Mummies have to be amongst the most controversial topics in recent human history, they have been “debunked” multiple times since they were first discovered by Archeologist Thierry Jamin from Peru’s Inkarri institute. Given that this case needed more eyes from the international community, Thierry and Peruvian journalist Jois Mantilla agreed to associate themselves with Mexican journalist Jaime Maussan. What they wanted became a reality, but the movedidn’t come with not obstacles. Nearly seven years after the bodies were discovered from an undisclosed location in the Nazca region, there are still a majority of scientists and academia members who dismiss these bodies as fake. None of them have studied the specimens in person. So far, every scientist who comes close to these bodies and studies them has stated they are real bodies of once living beings.

Carbon 14 test results confirmed these specimens’ remains are from various times in the distant past, some are 1,000+ years old and others are between 1,500 and 2,000 years old. Despite the Carbon 14 test results, the x-rays, and other types of scans that show incredible evidence. There are still many from the mainstream scientific community who believe we won’t get to prove these bodies are real until we get resuls from an extensive DNA analysis that is taking place in lultiple places around the world. Because Jaime Maussan’s involvement did bring more eyes on these bodies, and multiple labs are already running tests on samples obtained directly from the two sources in Peru that have them.

A new study by scientists at deCODE Genetics shows that sequence variants drive the correlation between DNA methylation and gene expression. The same variants are linked to various diseases and other human traits.

The research is published in the journal Nature Genetics under the title “The correlation between CpG methylation and is driven by sequence variants.”

Nanopore sequencing is a new technology developed by ONT (Oxford Nanopore Technology), that enables us to analyze DNA sequences in . With this technology, DNA molecules are drawn through tiny protein pores, and real-time measurements of electric current indicate which nucleotides in the DNA have passed through the pores. This allows the sequence of nucleotides in the DNA to be read, while also making it possible to detect chemical modifications of the nucleotides from these same measurements.

Several studies have indicated that interrupted epigenetic reprogramming using Yamanaka transcription factors (OSKM) can rejuvenate cells from old laboratory animals and humans. However, the potential of OSKM-induced rejuvenation in brain tissue has been less explored. Here, we aimed to restore cognitive performance in 25.3-month-old female Sprague–Dawley rats using OSKM gene therapy for 39 days. Their progress was then compared with the cognitive performance of untreated 3.5-month-old rats as well as old control rats treated with a placebo adenovector. The Barnes maze test, used to assess cognitive performance, demonstrated enhanced cognitive abilities in old rats treated with OSKM compared to old control animals. In the treated old rats, there was a noticeable trend towards improved spatial memory relative to the old controls.

A small team of public health specialists from the University of Glasgow and the Norwegian Institute of Public Health reports a possible link between some cases of autism and prenatal diet.

In their study, published in JAMA Network Open, the group analyzed information in two large databases of medical information on thousands of mothers and daughters in Norway and England.

Prior research has suggested that there appears to be diet, genetic and involved in the development of in children while they are still in the womb, though the exact cause is still unknown. For this new study, the research team looked more closely at the role of diet in its development.

Bioelectrical signaling in the African clawed frog modulates both resistance to infection and tail regeneration. Michael Levin at Tufts University in Massachusetts, USA, and colleagues have used genetic technologies and drug treatments to manipulate the bioelectrical properties of tissues in frog embryos. Reducing the electric gradient between the inside and outside of cells (depolarization) increased the embryos’ survival rate to bacterial infection, whereas increasing the resting potential (hyperpolarization) had the opposite effect. The authors found that serotonergic signaling and an increase in the number of myeloid cells underpin depolarization-induced immunity. Interestingly, embryos undergoing tail regeneration, which triggers depolarization, also showed increased resistance to infection.

Scientists at the University of Sydney have developed a gene-editing tool with greater accuracy and flexibility than the industry standard, CRISPR, which has revolutionized genetic engineering in medicine, agriculture and biotechnology.

SeekRNA uses a programmable ribonucleic acid (RNA) strand that can directly identify sites for insertion in genetic sequences, simplifying the editing process and reducing errors.

The new gene-editing tool is being developed by a team led by Dr. Sandro Ataide in the School of Life and Environmental Sciences. Their findings have been published in Nature Communications.

The path toward a cancer diagnosis is anything but fun. Among the least enjoyable aspects of the journey are the invasive and often excruciating biopsies that are needed to collect information about the genetic mutations or chromosomal abnormalities of the cells in a growing tumor. This information is critical for an accurate diagnosis of a patient’s cancer, as well as for prognosis predictions and treatment selections. At the recent Acoustical Society of America meeting in Ottawa, Canada, Roger Zemp of the University of Alberta reported on an alternative method that he and his colleagues have developed for extracting this genetic information that uses sound waves rather than tissue removal. “Traditional biopsies with their big needles are scary and painful,” says Joy Wang, a master’s student who works with Zemp. “Our method is pain free and can provide clearer information about a cancer’s genetics.”

Biopsy needles are akin to hole punches for the flesh. These long, hollow needles can be over 2 mm in diameter and typically punch out a core of flesh between 1 and 2 mm in diameter. For comparison, the average blood-draw needle is half a millimeter in diameter. The large holes made by the biopsy needles significantly increase the likelihood of pain, swelling, bruising, or infection at the biopsy site, both during the biopsy collection and for days afterward.

The prospect of being left black and blue can cause patients significant anxiety. The worry can become so high that it can stop a person from getting a questionable lump or bump checked out. Therefore, researchers have been searching for less invasive, less frightening methods to retrieve the information that biopsies provide. Alternative techniques could also allow for earlier detection of some cancers, Zemp says.

“Bridge recombination can universally modify genetic material through sequence-specific insertion, excision, inversion, and more, enabling a word processor for the living genome beyond CRISPR,” said Berkeley’s Patrick Hsu, a senior author of one of the studies and Arc Institute core investigator, in a press release.

CRISPR Coup

Scientists first discovered CRISPR in bacteria defending themselves against viruses. In nature, a Cas9 protein pairs with an RNA guide molecule to seek out viral DNA and, when located, chop it up. Researchers learned to reengineer this system to seek out any DNA sequence, including sequences found in human genomes, and break the DNA strands at those locations. The natural machinery of the cell then repairs these breaks, sometimes using a provided strand of DNA.