Archive for the ‘genetics’ category: Page 505
Mar 4, 2016
Investigators Use WGS, Mutational Analysis to Characterize Drug-Resistant Salmonella Epidemiology
Posted by Karen Hurst in categories: biotech/medical, genetics
The researchers sequenced bacteria samples sourced from all over the world to reconstruct a phylogenetic tree and learn how it evolved to have multidrug resistance.
Mar 4, 2016
Researcher develops technique for enhancing gene therapy
Posted by Shailesh Prasad in categories: biotech/medical, genetics, neuroscience
Using his knowledge of how genes are organized and repaired in human cells, Dr. Graham Dellaire, Dalhousie Medical School’s Cameron Research Scientist in Cancer Biology, has developed a technique that could make gene therapy more effective and safer to use. His work was recently published in Nucleic Acids Research and Nature.
CRISPR, named 2015’s breakthrough discovery of the year, stands for “Clustered Regularly-Interspaced Short Palindromic Repeats.” It can accurately target and edit DNA, offering the potential to cure genetic diseases and find new treatments for cancer.
To apply CRISPR in non-dividing cells—such as those in muscle and brain tissue—researchers must first make them behave like cells that divide. They do this by turning on a cellular process called homologous recombination, which protects DNA; the recombination allows a cell’s genes to be manipulated and rearranged without the possibility of causing more harm than good.
Mar 3, 2016
This genetics company claims it just achieved a major milestone in biology — and it could transform personalized medicine
Posted by Aleksandar Vukovic in categories: biotech/medical, genetics
Veritas Genetics, a Boston-based biotech company co-founded by Harvard geneticist George Church, is claiming it can now sequence your entire genome — the genetic blueprint inside all your cells that makes you who and what you are — for less than $1,000. That price tag includes an interpretation of the results and genetic counseling.
If the claim is true, it would shatter a long-held barrier in genetic medicine.
Reaching the $1,000 genome
Feb 29, 2016
Human Babies from CRISPR Pigs
Posted by Karen Hurst in categories: bioengineering, biotech/medical, genetics, health
New genetic technologies like CRISPR/Cas9 gene editing and synthetic biology are leading us to entirely new definitions of disease. Now “patients” include people who want children who lack some of their own genes, or have additional ones that they themselves lack. Also among the new patients are people who in the past were too old to have children as well some women who get sick from pregnancy and childbirth, or even the idea of them. Technological advances on the horizon may eventually offer treatment for such conditions.
In February 2015 the British Parliament approved production of “three-parent” children by transferring the nucleus of one woman’s egg into the nucleus-less (“enucleated”) egg of a second woman to avoid the propagation of certain rare “mitochondrial” diseases, Though there were acknowledged risks of the unprecedented procedure (including the possibility of producing novel birth defects), the argument that prevailed was that some mitochondrial diseases are so devastating that it should be tried in the narrowly defined group of prospective mothers carrying defective mitochondria.
Not long afterward, news articles began to appear discussing use of the technique for an entirely different purpose. The procedure’s inventor, the Oregon Health & Science University biologist Dr. Shoukhrat Mitalipov, was now proposing to treat infertility in older women by transferring their egg nuclei into the enucleated eggs of younger women.
Feb 28, 2016
“Genetic Scissors” Can Completely Eliminate HIV From Cells
Posted by Shailesh Prasad in categories: bioengineering, biotech/medical, evolution, genetics
Thanks to the cocktail of drugs that make up antiretroviral therapy, HIV is no longer a death sentence. But there are downsides to antiretroviral therapy—taking the treatment for many years is expensive, increases drug resistance, and could cause adverse reactions in a patient. And, because the virus stays in reservoirs in the body, the disease can continue to progress in patients if they stop taking their medication.
Now a team of German researchers has found an enzyme that can “cut” the viral DNA out of a cell’s genetic code, which could eradicate the virus from a patient’s body altogether. The proof-of-concept study, published this week in Nature Biotechnology and reported by Ars Technica, was done in mice, but the researchers believe that their conclusions show that this DNA-snipping enzyme could be used in clinical practice. And if it can cut HIV’s genetic code out of a patient’s body, the technique could be a cure for the disease.
The researchers created the DNA-snipping enzyme called Brec1 using directed evolution, an engineering technique that mimics proteins’ natural evolution process. They programmed the enzyme to cut DNA on either side of a sequence characteristic of HIV—a difficult task since the DNA of organisms and of the virus itself mutates often. Still, the researchers identified a well-conserved sequence, then they tested how reliably the enzyme could snip out that sequence in cells taken from HIV-positive patients, in bacteria, and in mice infected with the human form of HIV. After a number of tweaks, Brec1 would cut only that sequence of DNA, patching up the cell’s genetic code once the HIV sequence was cleaved out. After 21 weeks, the cells treated with Brec1 showed no signs of HIV.
Feb 28, 2016
Gene therapy to save the world
Posted by Montie Adkins in categories: bioengineering, biotech/medical, genetics, health, life extension, transhumanism
The most recent Liz talk. According to her in this vid her first test results of telomere length are next month.
Liz Parrish, the Founder and CEO of BioViva Sciences USA Inc, is best known for recently becoming the first person to be treated with gene therapy to reverse aging.
Feb 26, 2016
Illumina, the Google of Genetic Testing, Has Plans for World Domination
Posted by Klaus Baldauf in categories: biotech/medical, business, genetics, internet
You could say that Illumina is to DNA sequencing is what Google is to Internet search, but that would be underselling the San Diego-based biotech company. Illumina’s machines, the best and cheapest on the market, generate 90 percent of all DNA sequence data today. Illumina is, as they say, crushing it.
But as lucrative as that 90 percent slice is for Illumina now, the whole pie is likely to get even bigger in the future. Less than 0.01 percent of the world’s population has been sequenced so far. So recently, Illumina has made bold moves positioning itself for the future: The company is consolidating its core hardware business—this week, it sued an upstart competitor, Oxford Nanopore Technologies, for patent infringement—while moving into the genetic testing business with new ventures like the liquid cancer biopsy spinoff, Grail.
The company is a looking toward a future in which a lot more people gets genetic tests—and a lot more often. “Grail’s business will be very different than Illumina’s core business,” Eric Endicott, Illumina’s director of global public relations, said in an email. “We are at a tipping point in genomics, where a broad community of scientists and researchers continue to translate the potential of the genome from science to discoveries and applications.”
Continue reading “Illumina, the Google of Genetic Testing, Has Plans for World Domination” »
Feb 22, 2016
Hybrid Technology Converts Sugar into Nylon
Posted by Karen Hurst in categories: engineering, genetics
Now we can turn sugar into Nylon.
Genetically engineered yeast plus electro-catalyst yields bio-based nylon.