Menu

Blog

Archive for the ‘life extension’ category: Page 107

Jul 13, 2023

Discovery of chemical means to reverse aging and restore cellular function

Posted by in categories: biotech/medical, chemistry, life extension

In a groundbreaking study, researchers have unlocked a new frontier in the fight against aging and age-related diseases. The study, conducted by a team of scientists at Harvard Medical School, has published the first chemical approach to reprogram cells to a younger state. Previously, this was only achievable using a powerful gene therapy.

On July 12, 2023, researchers from Harvard Medical School, University of Maine and Massachusetts Institute of Technology (MIT) published a new research paper in Aging, titled, “Chemically induced reprogramming to reverse cellular aging.”

The team’s findings build upon the discovery that the expression of specific genes, called Yamanaka factors, could convert adult cells into induced (iPSCs). This Nobel Prize-winning discovery raised the question of whether it might be possible to reverse cellular aging without causing cells to become too young and turn cancerous.

Jul 13, 2023

The First Chemical Approach To Reprogram Cells to a Younger State

Posted by in categories: biotech/medical, chemistry, life extension

In a groundbreaking study, researchers have unlocked a new frontier in the fight against aging and age-related diseases. The study, conducted by a team of scientists at Harvard Medical School, has published the first chemical approach to reprogram cells to a younger state. Previously, this was only achievable using a powerful gene therapy.

Researchers from Harvard Medical School, University of Maine and Massachusetts Institute of Technology (MIT) published a new research paper in Aging, titled, “Chemically induced reprogramming to reverse cellular aging.”

Jul 13, 2023

Potentially Unlimited Supply — Scientists Grow Meat From Immortal Stem Cells

Posted by in categories: biotech/medical, life extension

For cellular agriculture—a technique that grows meat in bioreactors—to successfully feed millions, numerous technological hurdles must be conquered. The production of muscle cells from sources such as chicken, fish, cows, and more will need to increase to the point where millions of metric tons are yielded annually.

Researchers at the Tufts University Center for Cellular Agriculture (TUCCA) have made strides toward this objective by developing immortalized bovine muscle stem cells (iBSCs). These cells possess a rapid growth rate and the ability to divide hundreds of times, potentially even indefinitely, furthering the potential for large-scale meat production.

This advance, described in the journal ACS Synthetic Biology, means that researchers and companies around the globe can have access to and develop new products without having to source cells repeatedly from farm animal biopsies.

Jul 12, 2023

Altered gut bacteria could be early warning sign of Alzheimer’s

Posted by in categories: biotech/medical, life extension, neuroscience

A new study conducted by researchers at Washington University School of Medicine in St Louis has explored the composition of gut bacteria in individuals in the earliest stage of Alzheimer’s disease. The research, which is published in Science Translational Medicine, not only identifies potential indicators of heightened dementia risk, but also offers prospects for developing microbiome-altering preventive treatments to combat cognitive decline.

Longevity. Technology: Previously, science has noted differences in the gut microbiomes of individuals with symptomatic Alzheimer’s compared with their healthy counterparts. However, the current study delves deeper, focusing on the gut microbiomes of individuals in the crucial pre-symptomatic phase. During this phase, individuals accumulate amyloid beta and tau proteins in their brains without exhibiting neurodegeneration or cognitive decline, which can persist for over two decades. Earlier diagnosis would enable people to access support and resources, plan for the future and well as onboarding treatments that could slow the progression of the disease. An idea of future numbers of patients would also allow health care infrastructure to be better prepared.

The researchers evaluated participants who volunteered at the Charles F and Joanne Knight Alzheimer Disease Research Center at Washington University, specifically selecting cognitively normal individuals. These participants provided samples of stool, blood, and cerebrospinal fluid, recorded their dietary habits, and underwent PET and MRI brain scans.

Jul 12, 2023

Researchers develop compound that prevents free radical production in mitochondria

Posted by in categories: biotech/medical, information science, life extension

Back in 1956, Denham Harman proposed that the aging is caused by the build up of oxidative damage to cells, and that this damage is caused by free radicals which have been produced during aerobic respiration [1]. Free radicals are u nstable atoms that have an unpaired electron, meaning a free radical is constantly on the look-out for an atom that has an electron it can pinch to fill the space. This makes them highly reactive, and when they steal atoms from your body’s cells, it is very damaging.

Longevity. Technology: As well as being generated in normal cell metabolism, free radicals can be acquired from external sources (pollution, cigarette smoke, radiation, medication, &c) and while the free radical theory of aging has been the subject of much debate [2], the understanding of the danger free radicals pose led to an increase in the public’s interest in superfoods, vitamins and minerals that were antioxidants – substances that have a spare electron which they are happy to give away to passing free radicals, thus removing them from the danger equation.

But before you reach for the blueberries, it is important to know that, as so often in biology, the story is not black and white. Like a misunderstood cartoon villain, free radicals have a beneficial side, too – albeit in moderation. Free radicals generated by the cell’s mitochondria are beneficial in wound-healing, and others elsewhere act as important signal substances. Used as weapons by the body’s defense system, free radicals destroy invading pathogenic microbes to prevent disease.

Jul 11, 2023

Atg4b Overexpression Extends Lifespan and Healthspan in Drosophila melanogaster

Posted by in category: life extension

Autophagy plays important but complex roles in aging, affecting health and longevity. We found that, in the general population, the levels of ATG4B and ATG4D decreased during aging, yet they are upregulated in centenarians, suggesting that overexpression of ATG4 members could be positive for healthspan and lifespan. We therefore analyzed the effect of overexpressing Atg4b (a homolog of human ATG4D) in Drosophila, and found that, indeed, Atg4b overexpression increased resistance to oxidative stress, desiccation stress and fitness as measured by climbing ability. The overexpression induced since mid-life increased lifespan. Transcriptome analysis of Drosophila subjected to desiccation stress revealed that Atg4b overexpression increased stress response pathways. In addition, overexpression of ATG4B delayed cellular senescence, and improved cell proliferation.

Jul 11, 2023

Reversing Biological Aging with Gene Therapy: Ines O’Donovan Interviews Liz Parrish, CEO of BioViva

Posted by in categories: biotech/medical, life extension

Have you ever wondered about the future of aging? What if I told you that we’re on the brink of a revolution that could redefine what it means to grow old … with gene therapy.

Today, I want to introduce you to a woman who is not just imagining this future, but actively creating it.

Meet Liz Parrish, the trailblazing CEO of BioViva, a biotech company that’s pushing the boundaries of what’s possible with gene therapies.

Jul 11, 2023

Artist Georgia Banks on falling in love with AI and immortalising herself in the cloud

Posted by in categories: life extension, robotics/AI

Can you really die in the digital age? It’s a question that plagues performance artist Georgia Banks. Not only is this question a recurring theme in her work, but it’s also a concept she lives by.

Since earning a Master of Fine Arts (MFA) from the VCA in 2015, Georgia Banks has consistently skirted the boundaries between art and life through her performance-based works.

Through her practice, Banks has clinched a beauty pageant title, auctioned off the rights to her funeral, endured a crucifixion, and been sued by the estate of American artist Hannah Wilke.

Jul 10, 2023

Existing cancer drug ponatinib could be repurposed to fight certain aggressive cancers

Posted by in categories: biotech/medical, life extension, neuroscience

A team of scientists led by Nanyang Technological University, Singapore (NTU Singapore) has found that an existing cancer drug could be repurposed to target a subset of cancers that currently lack targeted treatment options and are often associated with poor outcomes.

This subset of cancers makes up 15% of all cancers and is especially prevalent in aggressive tumors such as osteosarcoma (bone tumor) and glioblastoma (brain tumor).

These cancerous cells stay “immortal” using a mechanism called the alternative lengthening of telomeres (ALT), but the team has demonstrated that ponatinib, a cancer approved by the US Food and Drug Administration, blocks key steps in the ALT mechanism that leads it to fail.

Jul 10, 2023

Anti-aging is a ‘double-edged sword,’ says a biologist who studies how your cells and molecules just get more tired as you get older

Posted by in categories: biotech/medical, life extension

There are many different definitions of aging, but scientists generally agree upon some common features: Aging is a time-dependent process that results in increased vulnerability to disease, injury and death. This process is both intrinsic, when your own body causes new problems, and extrinsic, when environmental insults damage your tissues.

Your body is comprised of trillions of cells, and each one is not only responsible for one or more functions specific to the tissue it resides in, but must also do all the work of keeping itself alive. This includes metabolizing nutrients, getting rid of waste, exchanging signals with other cells and adapting to stress.

The trouble is that every single process and component in each of your cells can be interrupted or damaged. So your cells spend a lot of energy each day preventing, recognizing and fixing those problems.