Toggle light / dark theme

Recent research published in Nature Communications has used machine learning algorithms to find new compounds that can eliminate senescent cells [1].

Senolytics are molecules that destroy senescent cells. Only a small number of such molecules have been identified, and only two have shown efficacy in clinical trials: dasatinib and quercetin in combination [2]. One of the biggest challenges is that senolytics often only work against specific types of cells. Additionally, some senolytics may work well for one cell type while being toxic to other, non-senescent cell types [3].

There is also a group of senolytics that are used in cancer therapies. However, most of them target pathways that are mutated in cancer. Therefore, they cannot be used as therapeutic agents in different contexts.

Age is a risk factor for hematologic malignancies. Attributes of the aging hematopoietic system include increased myelopoiesis, impaired adaptive immunity, and a functional decline of the hematopoietic stem cells (HSCs) that maintain hematopoiesis. Changes in the composition of diverse HSC subsets have been suggested to be responsible for age-related alterations, however, the underlying regulatory mechanisms are incompletely understood in the context of HSC heterogeneity. In this study, we investigated how distinct HSC subsets, separated by CD49b, functionally and molecularly change their behavior with age. We demonstrate that blood lineage differentiation progressively shifts to a higher myeloid cellular output in both lymphoid-biased and myeloid-biased HSC subsets during aging. In parallel, we show that HSCs selectively undergo age-dependent gene expression and gene regulatory molecular changes in a progressive manner, which is initiated already in the pre-adult stage. Overall, our studies suggest that aging intrinsically alters both cellular and molecular properties of HSCs.

The authors have declared no competing interest.

Retinal pigment epithelial (RPE) cells grown on 3D nano scaffolds have the potential to treat age-related macular degeneration, a disease that is making millions of humans blind as they age.

Age-related macular degeneration (AMD) is one of the most common causes of poor eyesight, blurred vision, and blindness in middle and old-age individuals. A team of scientists at Anglia Ruskin University (ARU) has figured out a way to treat this condition using cultured retinal pigment epithelial (RPE) cells.

In their latest study, the ARU team demonstrated a method that allowed them to grow RPE cells on 3D nano scaffolds made of thin nanofibers that can be arranged in any orientation and replicate nerve fibers’ arrangement.

The naked mole rat lives much longer than iI’s than other members of its species. Can it’s ability to repair DNA and fold proteins be employed in Humans to extend our lifespan?


Several animal species are considered to exhibit what is called negligible senescence, i.e. they do not show signs of functional decline or any increase of mortality with age. Recent studies in naked mole rat and long-lived sea urchins showed that these species do not alter their gene-expression profiles with age as much as other organisms do. This is consistent with exceptional endurance of naked mole rat tissues to various genotoxic stresses. We conjectured, therefore, that the lifelong transcriptional stability of an organism may be a key determinant of longevity. We analyzed the stability of a simple genetic-network model and found that under most common circumstances, such a gene network is inherently unstable. Over a time it undergoes an exponential accumulation of gene-regulation deviations leading to death.

In a bizarre experiment researchers from US and Russia connected the circulatory systems of young and old mice for a whole 12 weeks, slowing the older animals’ cellular aging and increasing their lifespan by as much as 10 percent.

The study expands on previous research showing there are components in young mammalian blood worth investigating for anti-aging health benefits.

As impressive as the results seem, they fall well short of supporting whole-blood transfusion treatments in humans. Putting aside the huge biological leap between mice and humans, there are numerous known and severe risks associated with such treatments for the receiver, not to mention questionable ethics of donation.

A team at Nottingham Trent University analyzed the full set of more than 11,000 gene transcripts inside muscle cells, finding that the ‘development pathways’—the different ways in which genes work together to regenerate muscle—become weakened in aged cells.

The study may help to shed some light on why take longer to recover from as we age. The study is published in the Journal of Tissue Engineering and Regenerative Medicine.

The researchers developed a new approach to examine in vitro in the laboratory to enable them to observe the different molecular mechanisms that drive aging.

The Klotho gene has gained increasing attention for its anti-aging properties. In the most recent installment of this series, we explored the promising cognitive benefits of administering Klotho to both mice and monkeys, the results from which may be mirrored in humans. The benefits of this circulating hormone, however, extend beyond the brain.

Klotho was first discovered as the antiaging gene in 1997 when researchers found that enhancing its expression could increase the lifespan of mice by more than 30%. Although a variety of different genes and environmental factors can influence longevity, studies have shown that Klotho-deficient mice not only have shorter lifespans but also experience more age-related complications. Premature aging in these mice often was accompanied by loss of muscle and fat tissue, thinning skin, reduced fertility, cardiovascular complications, movement abnormalities, and bone disease. Since Klotho is primarily produced in the kidneys, it is not surprising that many of these age-related complications often result from kidney dysfunction.

The kidneys generate two types of Klotho: a transmembrane protein that inserts itself into the cell membrane and mediates kidney function, and a secreted hormone that is released into the bloodstream. Individuals with naturally high levels of the hormone in their blood seem to not only live longer and be more resistant to age-related complications but also perform better on learning and memory tasks. In fact, even when a relatively small dose of Klotho is administered, animal studies have shown that the brain undergoes significant changes that allow more connections to be made in the hippocampus, the brain’s learning and memory center.

There’s no shortage of AI doomsday scenarios to go around, so here’s another AI expert who pretty bluntly forecasts that the technology will spell the death of us all, as reported by Bloomberg.

This time, it’s not a so-called godfather of AI sounding the alarm bell — or that other AI godfather (is there a committee that decides these things?) — but a controversial AI theorist and provocateur known as Eliezer Yudkowsky, who has previously called for bombing machine learning data centers. So, pretty in character.

“I think we’re not ready, I think we don’t know what we’re doing, and I think we’re all going to die,” Yudkowsky said on an episode of the Bloomberg series “AI IRL.”