Category: life extension – Page 52
Partial reprogramming with the Yamanaka transcription factors is considered to be a potential anti-aging strategy, but until now largely regarded as systemic intervention.
Reprogramming aged cells through targeted overexpression of Oct4, Sox2, and Klf4 leads to beneficial health effects in progeroid and aged mice.
Humans have been trying to cheat death for thousands of years. Myths about elixirs promising immortality span various cultures, as do real concoctions that often did more harm than good. One of the most misguided attempts at creating a potion for immortality involved the first emperor of China and mercury pills. In his obsession with finding a formula that would grant him eternal life, Qin Shi Huang downed mercury and other toxic substances nearly two millennia ago, believing his alchemists had hit upon the perfect magical tonic. Unsurprisingly, he died prematurely at age 49.
Archeologists have discovered another 2,000-year-old “elixir for immortality” that sheds light on the true cost of chasing down eternal life.
While excavating the tomb of a Western Han noble family in China’s Henan province in 2018, researchers unearthed a bronze pot. At first, the team thought the liquid inside was wine, but more recently determined that it was an alchemist’s formulation: a yellow liquid containing potassium nitrate and alunite. These two ingredients are cited in ancient Taoist texts as ingredients for immortality. Potassium nitrate is an inorganic salt used today as a natural source of nitrate, and is a useful ingredient in food preservatives, fertilizer, and fireworks. Alunite is a mineral that forms in volcanic or sedimentary environments when sulfur-rich minerals oxidize. It has historically been used to make alum, which is important for water purification, tanning, and dyeing.
The future of technology has an age-old problem: rust. When iron-containing metal reacts with oxygen and moisture, the resulting corrosion greatly impedes the longevity and use of parts in the automotive industry. While it’s not called “rust” in the semiconductor industry, oxidation is especially problematic in two-dimensional (2D) semiconductor materials, which control the flow of electricity in electronic devices, because any corrosion can render the atomic-thin material useless. Now, a team of academic and enterprise researchers has developed a synthesis process to produce a “rust-resistant” coating with additional properties ideal for creating faster, more durable electronics.
The team, co-led by researchers at Penn State, published their work in Nature Communications (“Tailoring amorphous boron nitride for high-performance two-dimensional electronics”).
These materials are made from molybdenum disulfide, a two-dimensional semiconductor, grown on a sapphire surface. The triangular shapes seen are aligned because of a special process called epitaxy, where the material follows the pattern of the surface it’s grown on. Insulating layers, like amorphous boron nitride, are added during the process of making these ultra-thin materials, which are used to build next-generation electronic devices. (Image: J.A. Robinson Research Group/Penn State)
In the present investigation, the SD rats were separated into two groups old control group and the treatment group (n = 8). The treatment group received four injections of E5 every alternate day for 8 days, and eight injections every alternate day for 16 days. Body weight, grip strength, cytokines, and biochemical markers were measured for more than 400 days of the study. Clinical observation, necropsy, and histology were performed. The E5 treatment exhibited great potential by showing significantly improved grip strength, remarkably decreased pro-inflammatory markers of chronic inflammation and oxidative stress, as well as biomarkers for vital organs (BUN, SGPT, SGOT, and triglycerides), and increased anti-oxidant levels. Clinical examinations, necropsies, and histopathology revealed that the animals treated with the E5 had normal cellular structure and architecture. In conclusion, this unique ‘plasma-derived exosome’ treatment (E5) alone is adequate to improve the health-span and extend the lifespan of the old SD rats significantly.
Scientists may have unlocked anti-aging secrets by studying a plant cell organelle:
Research team stumble upon new discovery which potentially holds the key to aging in plants. Click here to find out what this means for the future.
13y Younger Biological Age.
(Blood Test #6 in 2024; Test #54 Since 2015)
Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.
Year 2022 Solar powered mitochondria could enable humans to use light to recharge their mitochondria and extend life also their bodies would be recharged by fuel from the sun.
Using light to optogenetically power mitochondria, this study shows that opposing the age-related decline in mitochondrial membrane potential leads to increased healthspan and lifespan in Caenorhabditis elegans. This result points to mitochondrial charge as a fundamental regulator of biological aging.
Single-cell profiling in the human cortex reveals aging-associated transcriptomic changes across all brain cell types, which overlap with effects with Alzheimer’s disease and show a convergent signature with psychopathology across multiple cell types.
While current treatments for ailments related to aging and diseases like type 2 diabetes, Alzheimer’s, and Parkinson’s focus on managing symptoms, Texas A&M researchers have taken a new approach to fight the battle at the source: recharging mitochondrial power through nanotechnology.
Led by Dr…
When we need to recharge, we might take a vacation or relax at the spa. But what if we could recharge at the cellular level, fighting against aging and disease with the microscopic building blocks that make up the human body?