Toggle light / dark theme

How society can profit from treating age-related diseases.


We’re now living longer than ever – only to suffer from diseases of old age. New therapies promise a new lease of life for the elderly – and big profits for investors, says Matthew Partridge.

Over the past century, average life expectancy in most countries has grown substantially. Vastly lower infant mortality, improved living standards, better public sanitation, and the discovery of cures or vaccines for many once-deadly diseases, have seen average life expectancy in most developed nations rise to around 80, compared with 50 in 1900. Developing nations have benefited too. Life expectancy in China, for example, was just 43 in 1960 – it’s 75 today. Indeed, according to the World Health Organisation, no individual nation outside Africa now has a life expectancy of below 60, and even Africa has seen huge gains since 2000, helped by improved anti-malarial measures and wider availability of HIV/Aids treatments.

However, the pace of progress is slowing. From 1900, it took less than 30 years for life expectancy in the US to rise from 50 to 60 years. It took another 40 years to rise to 70, and now, nearly 50 years later, it is still hovering at just below 80. The problem is that while we’ve largely beaten the diseases that used to kill people in childhood, early adulthood and even middle age, we’re having much less success in prolonging the life of the elderly. Here’s a stark illustration: in Britain in 1840, if you made it to 65, you could expect, on average, to die at age 76. In 2011, a 65-year-old could expect to die aged 83. In other words, today you have a far better chance of living to 65 than you did 170-odd years ago. But if you do, your remaining life expectancy won’t be much greater than that of your 19th-century peers.

Pesquisadores da Human Longevity, Inc. Publicou documentos detalhando resultados do sequenciamento profundo de 10.545 genomas humanos.

Documento descreve 150 milhões de variantes raras ou desconhecidas; cerca de 8.500 novas variantes por genoma.

Companhia também anuncia novo motor de pesquisa do genoma, HLI Open Search, para testes beta.

Read more

My new story for TechCrunch on why a new generation of kids might “really” love robots. What would Freud say?


Robots intrigue us. We all like them. But most of us don’t love them. That may dramatically change over the next 10 years as the “robot nanny” makes its way into our households.

In as little time as a decade, affordable robots that can bottle-feed babies, change diapers and put a child to sleep might be here. The human-machine bond that a new generation of kids grows up with may be unbreakable. We may end up literally loving our machines almost like we do our mothers and fathers.

I’ve already seen some of this bonding in action. I have a four-foot interactive Meccanoid robot aboard my Immortality Bus, which I’ve occasionally used for my presidential campaign. The robot can do about 1,000 functions, including basic interaction with people, like talking, answering questions and making wisecracks. When my five-year-old rides with me on the bus, she adores it. After being introduced to it, she obsessively wanted to watch Inspector Gadget videos and read books on robots.

More progress in repairing damage to the cornea which could have implications for aging research as well as for injury.


Media Contacts: Suzanne Day Media Relations, Mass. Eye and Ear 617−573−3897 [email protected]

New findings may pave the way for the development of pharmaceutical therapies to reverse corneal scarring

Boston, Mass. — In cases of severe ocular trauma involving the cornea, wound healing occurs following intervention, but at the cost of opaque scar tissue formation and damaged vision. Recent research has shown that mesenchymal stem cells (MSCs) — which can differentiate into a variety of cells, including bone, cartilage, muscle and fat cells — are capable of returning clarity to scarred corneas; however, the mechanisms by which this happens remained a mystery — until now. In a study published online today in Stem Cell Reports, researchers from Schepens Eye Research Institute of Massachusetts Eye and Ear have identified hepatocyte growth factor (HGF), secreted by MSCs, as the key factor responsible for promoting wound healing and reducing inflammation in preclinical models of corneal injury. Their findings suggest that HGF-based treatments may be effective in restoring vision in patients with severely scarred corneas.

Interesting article that suggests Acne sufferers may live longer.


Spotty teenagers may have the last laugh over their peers with perfect skin after research found that those who suffer from acne are likely to live longer.

Their cells have a built-in protection against ageing which is likely to make them look better in later life, a study has found.

By the time she reaches middle age, the spotty girl who could never find a boyfriend could be attracting envious glances from her grey and wrinkly peers.

How we can use CRISPR/Cas9 to treat the processes of aging.


Oliver Medvedik, Cofounder of the Life Extension Advocacy Foundation and the Lifespan.io Crowdfunding platform, discusses the CRISPR/Cas9 gene editing system in depth and highlights how it may be used to help overcome the diseases and disabilities of aging. He also gives an overview of other promising areas in aging research, such as senescent cell-clearing drugs, or “senolytics”, and “augmentive” compounds that may help restore the body to youthful functionality.

Support our campaigns: https://www.lifespan.io/

Please sign this petition to the NIH to help get more funding for aging research.


Every year about two million Americans die of illnesses doctors cannot cure. Cancer afflicts 50% of men and 30% of women. Five hundred and ninety five thousand Americans will die of cancer this year. Millions get heart diseases, strokes, etc. Every year 1,612,552 Americans die of the top 8 illnesses that doctors are unable to cure. Over a 30-year period, 48,376,560 United States citizens will die of the top 8 illnesses. Let us not forget other disabling and potentially curable illnesses. How much is it worth to save them? We have the resources and opportunity to cure age-related disease.

History has shown that medical research actually saves money. We now spend three trillion two hundred billion dollars yearly for health care. The health care expenditures will increase as our population grows with more senior citizens.

Every year we also spend hundreds of billions of dollars for services such as Social Security Disability, welfare, food stamps, special transportation, etc. Medical research will help cut down on the need for these services. It will also extend our lives.

A strong rebuttle to the sick article in the Telegraph which attempts to discredit Zuckerberg and Chan and their commitment to curing diseases.


Science and progress hardly ever stop just because a few cuckoos think we’re going too far. That’s what I tell myself most of the times when I bump into depressingly ill-informed articles about ageing and the diseases of old age. I tell myself that the best thing to do is to just let such articles disappear into oblivion and not give them any extra visibility. However, if instead of a few cuckoos we’re faced with an army of cuckoos, then we’re in for troubles.

At the time of this writing, people who are in favour of or oppose rejuvenation aren’t many, and neither are those who know about it but don’t care. Quite likely, most people in the world haven’t even heard about it yet. What I fear is that, when the advent of rejuvenation biotechnologies will be close, people who oppose rejuvenation will do their best to persuade undecided ones that disease is better than health, and ultimately, provoke an us-vs-them conflict that could jeopardise the cause of rejuvenation. The best way to avoid that conflict is to convince as many people as possible to support rejuvenation biotechnologies before they even arrive, so that when they do, those who oppose them will only be a few cuckoos indeed and not an army. Exposing the intellectual misery of deathist arguments is indubitably a good way of reaching this goal; that’s why I chose to respond to this spectacularly stupid article, instead of just ignoring it.

Lewis doesn’t want to live in a world without diseases. She prefers living in one where diseases are invented.