Toggle light / dark theme

Judging by the way some users handle portable consumer electronics, it’s fair to say that they can be considered harsh environment devices. Cell phones, MP3 players, tablets and other portable electronic devices have become ubiquitous personal and professional tools that are used constantly throughout the day and not with the gentlest of care. As a result, switch manufacturers must create new rugged miniature switches that combine significant space and weight reductions with ruggedness and long operating lives.

These miniature switches must function in the same reliable, consistent manner as the more substantially-sized industrial design, all the while maintaining optimum functionality, performance and extended lifespans. Switch manufacturers that offer value-added services, including manufacturing modules and custom assemblies, can deliver complete electromechanical solutions that not only meet the size and performance requirements, but can also withstand the elements like vibration and shock.

Read more

No more smartphones.


In Brief

  • Researchers are finding ways for us to communicate using only our minds, going so far as to give people in separate rooms the ability to send answers to each other without speaking.
  • If we can hone this technology, it could help people with paralysis or other physical disorders regain the ability to communicate or perform physical tasks.

Imagine living in a world in which verbal communication is no longer required, a society in which telepathy is the norm, where people would be able to “speak” to each other using only their thoughts.

Scientists have long been contemplating the possibilities of brain-to-brain communication in humans, and it appears as though their dreams could become a reality within the next year or so. Such a system would be made possible via major advances in the technology that have been achieved via recent trials involving animals.

Now, this is a breakfast I wished that I could have experienced.


So, I tweeted about this yesterday, but I also spent the entire day feeling achy and feverish, so didn’t have brains or time for a blog post with more details. I’m feeling healthier this morning, though time is still short, so I’ll give a quick summary of the details:

— As you can see in the photo (taken with my phone at Starbucks just before I took these to the post office to mail them), I signed a contract for a new book. Four copies, because lawyers.

— The contract is with Oneworld Publications in the UK, who had a best-seller on that side of the pond with How to Teach Quantum Physics to Your Dog.

Read more

Computer boffins Juan Echeverria and Shi Zhou at University College London have chanced across a dormant Twitter botnet made up of more than 350,000 accounts with a fondness for quoting Star Wars novels.

Twitter bots have been accused of warping the tone of the 2016 election. They also can be used for entertainment, marketing, spamming, manipulating Twitter’s trending topics list and public opinion, trolling, fake followers, malware distribution, and data set pollution, among other things.

In a recently published research paper, the two computer scientists recount how a random sampling of 1 per cent of English-speaking Twitter accounts – about 6 million accounts – led to their discovery.

Read more

The graphene temporary tattoo seen here is the thinnest epidermal electronic device ever and according to the University of Texas at Austin researchers who developed it, the device can take some medical measurements as accurately as bulky wearable sensors like EKG monitors. From IEEE Spectrum:

Graphene’s conformity to the skin might be what enables the high-quality measurements. Air gaps between the skin and the relatively large, rigid electrodes used in conventional medical devices degrade these instruments’ signal quality. Newer sensors that stick to the skin and stretch and wrinkle with it have fewer airgaps, but because they’re still a few micrometers thick, and use gold electrodes hundreds of nanometers thick, they can lose contact with the skin when it wrinkles. The graphene in the Texas researchers’ device is 0.3-nm thick. Most of the tattoo’s bulk comes from the 463-nm-thick polymer support.

The next step is to add an antenna to the design so that signals can be beamed off the device to a phone or computer, says (electrical engineer Deji) Akinwande.

Read more